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PREFACE

These notes concern the undergraduate course Linear Algebra II. The content of the notes has been
based on the material taught in the undergraduate curriculum of the Department of Mathematics
of the National and Kapodistrian University of Athens. The notes constitute an aid for examined
(and non-examined) students; however, it must be stated that under no circumstances can these
notes replace any corresponding textbook of this subject area. At the end of each chapter there are
also practice exercises for the students, with which it is recommended to engage for the optimal
understanding of the course material.

After the completion of the theory, the reader can also find solved examination problems from
the examinations of the Department of Mathematics of the National and Kapodistrian University
of Athens, in order to become familiar with the type of exercises that are usually asked in the
examinations.

Finally, it is clear that the notes will contain typographical (and not only) errors, so if you notice
mistakes you may point them out at the e-mail: kbfg6@umsystem.edu

Konstantinos Bizanos,
Missouri,
December 26, 2025
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CHAPTER 1

SIMILAR MATRICES

1.1 Definition and properties

Definition 1.1.1. Let A,B ∈ Fn×n. We will say that A and B are similar if there exists an
invertible matrix P such that B = P−1AP .

Observation 1.1.1. Matrix similarity is an equivalence relation.

Proof. Let A,B,C ∈ Fn×n.

i. A is similar to itself, since: A = I−1
n AIn.

ii. If A and B are similar, then B and A are also similar. Indeed, there exists an invertible
P ∈ Fn×n such that

B = P−1AP ⇔ PB = P (P−1AP ) ⇔ A = PBP−1.

iii. If A and B are similar, and also B and C are similar, then A and C are similar. Indeed, there
exist invertible matrices P,Q such that

B = P−1AP

and
C = Q−1BQ.

9
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Then:

C = Q−1BQ = Q−1(P−1AP )Q = (Q−1P−1)A(PQ) = (PQ)−1A(PQ),

hence A and C are similar.

Example 1.1.1. Let the matrices

A =

(
1 3
4 2

)
, B =

(
−2 0
0 5

)
.

We observe that B = P−1AP , where

P =

(
−1 3
1 4

)
,

therefore the matrices A and B are similar.

Example 1.1.2. Let the matrices

A =

(
1 0
0 1

)
, B =

(
1 1
0 1

)
.

The matrices A and B are not similar. Indeed, if there existed an invertible matrix P such that:

B = P−1AP = P−1I2P = P−1P = I2,

we arrive at a contradiction.

Observation 1.1.2. If a matrix B is similar to In, then B = In.

Proof. The conclusion follows immediately from Example 1.1.2.

Reminder 1.1.1. Let A ∈ Fn×n. The following three integers coincide (that is, they define the
rank of the matrix A, i.e. rank(A)):

(i) The maximum number of linearly independent columns.

(ii) The maximum number of linearly independent rows.

(iii) The dim(Im(LA)), where LA : Fn×1 → Fn×1, X 7→ AX .
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Proposition 1.1.1. Let A and B be similar. Then the following hold:

i. det(A) = det(B),

ii. trA = trA

iii. rankA = rankB.

Proof. i. SinceA andB are similar, there exists an invertible matrix P such thatB = P−1AP .
Then:

detB = det(P−1AP )

= det(P−1) · det(A) · det(P )

=
1

det(P )
· det(A) · det(P )

= detA

ii. Since A is similar to B, there exists an invertible P such that

B = P−1AP

Then, from the property
trAB = trBA

we have
trB = tr

(
P−1AP

)
= tr

(
APP−1

)
= trA.

iii. The matrices A and B are similar, hence they are also equivalent, so rank(A) = rank(B).

Attention! The converse does not hold in general.

Example 1.1.3. For example, the matrices

A =

(
1 0
0 1

)
, B =

(
1 1
0 1

)
are not similar, even though they have equal determinant and equal rank: det(A) = det(B) and
rank(A) = rank(B).
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1.2 Relation to linear maps

Question. How do similar matrices appear in nature?

An informal answer is that similar matrices arise from changes of bases of linear maps. The precise
answer is given via the following theorem. But first let us recall some useful tools.

Reminder 1.2.1. i. Let â be a basis of V , and let P ∈ Fn×n be invertible. Then there exists a
basis b̂ of V with

P =
(
1V : b̂, â

)
.

ii. Let â, b̂ be bases of V . Then we have(
1V : b̂, â

)−1
=
(
1V : â, b̂

)
.

iii. Let f : U → V , g : V → W be linear maps and let â, b̂, ĉ be ordered bases of U, V,W
respectively. Then:

(g ◦ f : â, ĉ) = (g : b̂, ĉ) · (f : â, b̂).

Proof. Indicatively we will prove (i). Since

â = (a1, . . . , an)

is a basis of V , there exists a linear map f : V → V with

P = (f : â, â).

Since P is invertible, f is an isomorphism, hence

f(a1), . . . , f(an)

form a basis of V . Set
b̂ = (f(a1), . . . , f(an))

and from the definition of the matrix of a linear map we have

P =
(
1V : b̂, â

)
.
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Theorem 1.2.1. Let f : V → V be a linear map, let v̂ be an ordered basis of V and let A ∈ Fn×n

with
A = (f : v̂, v̂).

Let B ∈ Fn×n. Then the following are equivalent:

i. The matrices A and B are similar.

ii. There exists an ordered basis ŵ of V such that B = (f : ŵ, ŵ).

Proof. • i. ⇒ ii.: Let P be invertible with

B = P−1AP.

Then, by Reminder 1.2, there exists an ordered basis ŵ such that

P = (1V : ŵ, v̂).

Then:

B = (1V : v̂, ŵ) · (f : v̂, v̂) · (1V : ŵ, v̂) = (1V ◦ f ◦ 1V : ŵ, ŵ) = (f : ŵ, ŵ).

• ii. ⇒ i.: Let
B = (f : ŵ, ŵ)

for some ordered basis ŵ of V . We will show thatA andB are similar. Set P = (1V : ŵ, v̂).
Then:

B = (f : ŵ, ŵ) = (1V : v̂, ŵ) · (f : v̂, v̂) · (1V : ŵ, v̂) = P−1AP,

hence the matrices A and B are similar.
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1.3 Chapter 1 Exercises.

Group A : 1,2,4,5,6,7 Group B : 3

Exercise 1.1. Let λ ∈ F and A ∈ Fn×n. Show that if A is similar to λIn, then A = λIn.

Exercise 1.2. Let A,B ∈ Fn×n.

a. If the matrices A+ λIn, B + λIn are similar for some λ ∈ F, show that A,B are similar.

b. Is it true that if A2, B2 are similar, then A,B are similar;

Exercise 1.3. Let A,B ∈ Fn×n be similar matrices. Prove the following equalities.

a. detA = detB.

b. rankA = rankB.

c. TrA = TrB.

Exercise 1.4. Show that for every a ∈ R,

a. the matrices
(
1 2
3 4

)
,

(
1 −a
a −1

)
are not similar.

b. the matrices
(
1 −a
a −1

)
,−
(
1 −a
a −1

)
are similar.

Exercise 1.5. A linear map is given f : R2 → R2, f(x, y) = (x+ 2y, 2x+ y).

a. Compute the matrices (f : ê, ê) and (f : â, â), where â is the ordered basis (a1, a2), with
a1 = (1,−1), a2 = (1, 1).

b. Find an invertible P with (f : â, â) = P−1(f : ê, ê)P and an invertible Q with

(f : ê, ê) = Q−1 (f : â, â)Q.
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Exercise 1.6. A linear map is given f : R3 → R3 with formula

f(x, y, z) = (x+ y + 2z, 2x+ 2y + 4z, 3x+ 3y + 6z).

a. Show that the set {(1, 1, 1), (1, 1, 0), (1, 0, 0)} is a basis of R3.

b. Compute the matrix (f : â, â), where a = {(1, 1, 1), (1, 1, 0), (1, 0, 0)} and P invertible with
(f : â, â) = P−1(f : ê, ê)P .

c. Is it true that there exists an ordered basis b̂ of R3 such that (f : b̂, b̂) =

1 2 0
1 1 1
2 3 1

 ?

Exercise 1.7. Let A =

(
1 1
0 1

)
and R2×2 → R2×2, f(X) = AX −XA.

a. Show that the map f is linear.

b. After computing the matrix B =
(
f : Ê, Ê

)
, where Ê = {E11, E12, E21, E22} is the usual

ordered basis of R2×2, show that dim ker f = dim Imf = 2 and B3 = 0.

c. Is it true that there exists an ordered basis b̂ of R3, such that (f : b̂, b̂) = diag(1,−1, 0, 0) ?

Exercise 1.8. Examine which of the following statements are true. In each case justify your answer
with a proof or counterexample. Let A,B ∈ Fn×n be similar matrices.

a. If A = In, then B = In.

b. If B = −A ∈ F3×3, then A and B are not invertible.

c. The matrices
(
A

A

)
,

(
B

B

)
∈ F2n×2n are similar.

d. The matrices
(
A

C

)
,

(
B

C

)
∈ F(n+m)×(n+m) are similar, for every C ∈ Fm×m.
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CHAPTER 2

POLYNOMIALS

2.1 Divisibility

First, by F[x] we denote the set of polynomials with coefficients from F.

Every a(x) ∈ F[x] with a(x) 6= 0 is written uniquely in the form

a(x) = anx
n + · · ·+ a1x+ a0, an 6= 0.

With the previous notation, n = deg a(x) is called the degree of a(x), while an is called the leading
coefficient of a(x).

Observation 2.1.1. i. deg (a(x) + b(x)) ≤ max {deg a(x), deg b(x)},

ii. deg (am(x)) = m · deg a(x).

We consider the following operations on F[x] :

a(x) + b(x), a(x) · b(x), λ · a(x)

with a(x), b(x) ∈ F[x] and λ ∈ F.
Thus, F[x] becomes an F-vector space with respect to addition and scalar multiplication.

Example 2.1.1. Let the polynomials

a(x) = amx
m + · · ·+ a1x+ a0

17
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and
b(x) = bnx

n + · · ·+ b1x+ b0

in F[x]. Then, for the polynomial c(x) = a(x) · b(x) we have:

cj =
∑
0≤t

aj−t · bt.

Definition 2.1.1. Let a(x), b(x) ∈ F[x]. We will say that a(x) divides b(x) in F[x] if there exists
c(x) ∈ F[x] such that

b(x) = a(x) · c(x)
and we denote it by

a(x) | b(x).

Example 2.1.2. i. We have that x2 + x+ 1 | x3 − 1, since

x3 − 1 = (x2 + x+ 1)(x− 1).

ii. For every polynomial a(x) ∈ F[x] we have a(x) | 0.

iii. In general, 0 | a(x) if and only if a(x) = 0.

Observation 2.1.2. If a(x) ∈ F[x] divides two polynomials b(x), c(x) ∈ F[x], then it also divides
every polynomial of the form

f(x)b(x) + g(x)c(x)

for every f(x), g(x) ∈ F[x].

Proof. We have that a(x) | b(x), that is, there exists a polynomial q1(x) ∈ F[x] such that:

b(x) = a(x)q1(x).

Similarly, there exists a polynomial q2(x) ∈ F[x] such that:

c(x) = a(x)q2(x).

Then we obtain:

f(x)b(x) + g(x)c(x) = f(x)a(x)q1(x) + g(x)a(x)q2(x)

= a(x) [f(x)q1(x) + g(x)q2(x)] .

Thus, we conclude that
a(x) | f(x)b(x) + g(x)c(x),

for every f(x), g(x) ∈ F[x].
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Theorem 2.1.1 (Euclidean Division). Let a(x), b(x) ∈ F[x] with a(x) 6= 0. Then there exist
unique q(x), r(x) ∈ F[x] such that

b(x) = a(x)q(x) + r(x)

with r(x) = 0 or deg r(x) < deg a(x).

Example 2.1.3. We consider the polynomials a(x) = x2 + 1 and b(x) = x3 − 2x + 1. Then we
have the following:

b(x) = x · a(x) + (−3x+ 1).

Application 2.1.1. Let f(x) ∈ F[x] and c ∈ F. Then

c ∈ F is a root of f(x) ⇐⇒ x− c
∣∣ f(x).

Proof. Suppose that x− c |f(x), then there exists g(x) ∈ F[x] such that

f(x) = (x− c) · g(x) ⇒ f(c) = (c− c)g(c) = 0.

Conversely, by Theorem 2.1.1 there exist q(x), r(x) ∈ F[x] such that:

f(x) = (x− c)q(x) + r(x), r(x) = 0 or deg r(x) < deg (x− c).

Hence deg r(x) = 0 with

f(c) = (c− c)q(c) + r(c) = 0 ⇔ r(c) = 0.

That is, r(x) = 0 and
f(x) = (x− c)q(x).

Definition 2.1.2. Let f(x), g(x) ∈ F[x], not both zero. A d(x) ∈ F[x] is called the greatest
common divisor of f(x), g(x) if the following hold:

i. d(x) is monic (the leading coefficient of d(x) equals 1).

ii. d(x) divides both f(x) and g(x).

iii. If there is another common divisor d′(x) ∈ F[x] with d′(x) | f(x) and d′(x) | g(x), then
d′(x) | d(x).
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Theorem 2.1.2. Let f(x), g(x) ∈ F[x], not both zero.

i. There exists a unique greatest common divisor of f(x), g(x).

ii. Let d(x) = gcd(f(x), g(x)).

Then there exist a(x), b(x) ∈ F[x] such that:

d(x) = f(x) · a(x) + g(x) · b(x).

Definition 2.1.3. The polynomials f(x), g(x) ∈ F[x] are called relatively prime if:

gcd(f(x), g(x)) = 1.

Example 2.1.4. For gcd(x− a, x− b) we have:

gcd(x− a, x− b) =


1, if a 6= b

x− a, if a = b

More generally, if p(x) ∈ F[x] is an irreducible polynomial and f(x) ∈ F[x], then

gcd(f(x), p(x)) =


p(x), p(x)|f(x)

1, p(x) 6 |f(x)
.

Application 2.1.2. Let a(x), b(x) ∈ F[x] be relatively prime. Then:

i. If a(x) | b(x) · c(x) with c(x) ∈ F[x], then a(x) | c(x).

ii. If a(x) | c(x) and b(x) | c(x), then a(x) · b(x) | c(x).

Proof. i. Assume that gcd(a(x), b(x)) = 1. By Theorem 2.1.2, there exist a′(x), b′(x) ∈ F[x]
such that:

1 = a′(x)a(x) + b′(x)b(x) (2.1)

⇒ c(x) = c(x)a′(x)a(x) + c(x)b′(x)b(x).
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By assumption, a(x) | b(x)c(x), that is, there exists q(x) ∈ F[x] such that

b(x)c(x) = q(x)a(x).

Hence:

c(x) = c(x)a′(x)a(x) + q(x)a(x)b′(x) = a(x)[a′(x)c(x) + q(x)b′(x)]

so a(x) | c(x).

ii. From relation (2.1) and since a(x) | c(x) and b(x) | c(x), it follows that a(x)b(x) | c(x).

2.2 Irreducible Polynomials

Definition 2.2.1. A polynomial p(x) ∈ F[x] of positive degree is called irreducible in F[x] if there
do not exist a(x), b(x) ∈ F[x] such that:

a(x)b(x) = p(x) and deg a(x) < deg p(x), deg b(x) < deg p(x).

Example 2.2.1. 1. Every p(x) ∈ F[x] with deg p(x) = 1 is irreducible.

2. The polynomial x2 + 1 ∈ R[x] is irreducible, while x2 + 1 ∈ C[x] is not, since

x2 + 1 = (x− i)(x+ i).

Observation 2.2.1. Let p(x) ∈ F[x] be irreducible and monic. Then:

gcd(p(x), q(x)) =


1, if p(x) ∤ q(x),

p(x), if p(x) | q(x).

Proposition 2.2.1. Let f(x) ∈ C[x]. If z ∈ C is a root of f(x), then its conjugate z̄ is also a root
of f(x). 1

1In C: For every z ∈ C there exist unique a, b ∈ R such that z = a + bi. That is, C is a vector space over R with
basis {1, i} and dimR C = 2.
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Question 2.2.1. Which are the irreducible polynomials in R[x] and in C[x]?

i. The irreducible polynomials of C[x] are the linear polynomials. 2

ii. The irreducible polynomials in R[x] are the linear ones or the quadratic ones with∆ < 0.

Theorem 2.2.1. Every polynomial f(x) of positive degree can be written uniquely as follows:

f(x) = c · pn1
1 (x) · · · pns

s (x),

where c ∈ C and the pi(x) are monic, pairwise distinct, irreducible polynomials.

Example 2.2.2. 1. Let f(x) = x3 − 1 ∈ F[x]. Depending on the field F:

• If F = R, then x3 − 1 = (x− 1)(x2 + x+ 1).
• If F = C, then:

x3 − 1 = (x− 1)

(
x− −1 +

√
3i

2

)(
x− −1−

√
3i

2

)
.

2. For g(x) = x4 + 1, we observe that:

g(x) =
(
x2 −

√
2x+ 1

)(
x2 +

√
2x+ 1

)
.

Proposition 2.2.2. Let

f(x) = c1p1(x)
m1 · · · ps(x)ms , g(x) = c2p1(x)

n1 · · · ps(x)ns ,

where the pi(x) are monic, irreducible, pairwise distinct, and 0 ≤ mi, ni. Define:

di = min{mi, ni}, d(x) = p1(x)
d1 · · · ps(x)ds .

Then:
d(x) = gcd{f(x), g(x)}.

Example 2.2.3. In R[x], consider:

f(x) = 3(x− 5)10(x2 + x+ 1)6, g(x) = −(x− 5)4(x− 7)4(x2 + x+ 1)10.

Then:
gcd(f(x), g(x)) = (x− 5)4(x2 + x+ 1)6.

2This is equivalent to the Fundamental Theorem of Algebra: Every polynomial of positive degree with complex
coefficients has a root in C.
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Definition 2.2.2. Let a ∈ F be a root of f(x) ∈ F[x]. The greatest integerm such that (x− a)m |
f(x) is called themultiplicity of the root a in f(x). It is denoted bym = τ (a).

Example 2.2.4. For F = R and

f(x) = (x− 2)5(x− 3)(x2 + x+ 1),

we have:
τ (2) = 5, τ (3) = 1.

Definition 2.2.3. A root a of f(x) is called simple if its multiplicity equals 1. Otherwise, the root
is called multiple.

Proposition 2.2.3. Let a ∈ F be a root of f(x) ∈ F[x]. Then a is a multiple root of f(x) if and
only if it is also a root of the derivative f ′(x).

Proof. If a is a multiple root, then (x− a)2 | f(x), that is, there exists g(x) ∈ F[x] such that:

f(x) = (x− a)2g(x) ⇒ f ′(x) = 2(x− a)g(x) + (x− a)2g′(x),

so f ′(a) = 0.
Conversely, let f(a) = f ′(a) = 0. Since f(a) = 0, there exists g(x) ∈ F[x] with f(x) =
(x− a)g(x). Then:

f ′(x) = (x− a)g′(x) + g(x) ⇒ f ′(a) = g(a) = 0 ⇒ (x− a) | g(x),

hence f(x) = (x− a)2h(x) for some h(x), i.e. a is a multiple root.

Corollary 2.2.1. Let f(x) ∈ F[x]. If gcd(f(x), f ′(x)) = 1, then every root of f(x) is simple.

Proof. The proof is immediate via Proposition 2.2.3.
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2.3 Polynomials and matrices

Definition 2.3.1. Let f(x) = fmx
m + · · ·+ f1x+ f0 ∈ F[x] and A ∈ Fn×n. By f(A) we denote

the matrix:
f(A) = fmA

m + · · ·+ f1A+ f0In.

Example 2.3.1. If f(x) = −3x+ 5 ∈ R[x], then:

f(A) = −3A+ 5In, for every A ∈ Fn×n.

Observation 2.3.1. Let f(x), g(x) ∈ F[x], and let h(x) = f(x) + g(x), κ(x) = f(x)g(x). Then,
for every A ∈ Fn×n we have:

h(A) = f(A) + g(A), κ(A) = f(A)g(A).

Example 2.3.2. 1. Consider the polynomials f(x) = x2 − x and g(x) = x+ 1 in R[x]. Then
k(x) = f(x) · g(x) = x3 − x, hence:

k(A) = f(A) · g(A) = A3 −A = A(A− In)(A+ In).

2. If b(x) = q(x) · a(x) + r(x), then b(A) = q(A) · a(A) + r(A).

2.4 Polynomials and linear maps

Definition 2.4.1. Let f : V → V be a linear map and let a(x) = amx
m + · · ·+ a1x+ a0 ∈ F[x].

We define:
a(f) : V → V, a(f) = amf

m + · · ·+ a1f + a01V .

Observation 2.4.1. Let a(x), b(x) ∈ F[x], with c(x) = a(x) + b(x), d(x) = a(x) · b(x) and
f : V → V a linear map. Then:

c(f) = a(f) + b(f), d(f) = a(f) ◦ b(f).

Example 2.4.1. If P (x) = x2 − 1 ∈ F[x], then:

P (f) = f2 − 1V = (f − 1V ) ◦ (f + 1V ).
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Proposition 2.4.1. Let f : V → V be a linear map, let v̂ be an ordered basis of V and let A = (f :
v̂, v̂). Then, for every φ(x) ∈ F[x], we have:

(φ(f) : v̂, v̂) = φ(A).

Proof.

(φ(f) : v̂, v̂) = (φmf
m + · · ·+ φ1f + φ01V : v̂, v̂)

= φm(fm : v̂, v̂) + · · ·+ φ1(f : v̂, v̂) + φ0(1V : v̂, v̂)

= φmA
m + · · ·+ φ1A+ φ0In = φ(A).

Example 2.4.2. i. Consider the linear map f : F3 → F3 with matrix:

A = (f : v̂, v̂) =

−2 0 1
−1 1 0
0 1 −1

 .

Then if g = f2 + 3f + 1F3 , we have:

(g : v̂, v̂) = A2 + 3A+ In =

11 1 4
−6 5 0
−1 3 −1

 .

ii. Let f : V → V be a linear map and let φ(x) ∈ F[x] such that φ(f) = 0. If the constant term
φ0 6= 0, then f is an isomorphism.

Proof. Let φ(x) = φmx
m + · · ·+ φ1x+ φ0. Then:

φ(f) = φmf
m + · · ·+ φ1f + φ01V = 0.

Move the constant term:

1V = − 1

φ0
· (φmf

m + · · ·+ φ1f) =

[
− 1

φ0
· (φmf

m−1 + · · ·+ φ1)

]
◦ f.

Hence f is left- and right-invertible, i.e. an isomorphism.
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2.5 Chapter 2 Exercises.

Group A : 1,2,3,5,6,7,8,9,11,15 Group B : 4,10,12,13,14,16

Exercise 2.1. Let f(x), p(x) ∈ F[x] where p(x) is monic and irreducible. Show that

gcd(f(x), p(x)) = 1 or gcd(f(x), p(x)) = p(x).

Exercise 2.2. Find gcd
(
x2 + 1, x2018 + 1

)
and gcd

(
x2 + 1, x2018 − 1

)
.

Exercise 2.3. a. Let f(x) ∈ F[x] and a, b ∈ F with a 6= b. Find the remainder of the division
of f(x) by (x− a)(x− b).

b. Find all values of c, d ∈ R such that (x− 1)(x− 2)
∣∣x100 + cx5 + dx+ 1.

c. Find all values of c, d ∈ R such that (x− 1)2
∣∣x100 + cx5 + dx+ 1.

Exercise 2.4. The polynomials f(x) = 2x3 − 3x2 + 6x + 5 and g(x) = x3 + ax2 + x + 1 are
given, where a ∈ R.

a. Find the roots in C of f(x).

b. For which values of a do f(x), g(x) have a common real root?

c. Find the factorization of g(x) into a product of monic irreducibles in R[x] if one of its roots
in C is i.

Exercise 2.5. Let f(x), g(x) ∈ R[x], where f(x) = x5 − x4 − x2 + x, g(x) = x2 + x− 6. Find
their gcd and lcm.

Exercise 2.6. Let f(x), g(x) ∈ R[x], where f(x) = x3 − x2 + x − 1, g(x) = x2 + x − 2. Find
the matrices A ∈ Rn×n such that f(A) = g(A) = 0.

Exercise 2.7. Let f(x), g(x) ∈ F[x] with gcd(f(x), g(x)) = 1.

a. Show that there is no A ∈ Fn×n with f(A) = g(A) = 0.
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b. Is it true that for everyh(x) ∈ F[x] there exist a(x), b(x) ∈ F[x] such thath(x) = a(x)f(x)+
b(x)g(x)?

Exercise 2.8. Show that every root in C of f(x) is simple in the cases

a. f(x) = xn − 1,

b. f(x) = xn + x+ 1.

Exercise 2.9. Let f : F3 → F3 be the linear map with (f : â, â) =

 2 0 1
−1 1 0
0 1 −1

, where â is an

ordered basis of F3 and φ(x) = x2 + 3x+ 1 ∈ F[x]. Find the matrix (φ(f) : â, â).

Exercise 2.10. Let A ∈ Fn×n and φ(x) ∈ F[x]. Show the following.

a. If A is diagonal, A = diag(a1, · · · , an), then φ(A) = diag(φ(a1), · · · , φ(an)).

b. If A is of the form A =

A1

. . .
Ak

, where Ai ∈ Fni×ni and n1 + · · ·nk = n (’block

diagonal’), then φ(A) =

φ(A1)
. . .

φ(Ak)

. (Note. We mean that the invisible entries

are 0.)

c. If A is upper triangular, A =

a1 ∗
. . .

an

, then φ(A) =

φ(a1) ∗
. . .

φ(an)

.

d. If A is of the form A =

A1 ∗
. . .

Ak

, where Ai ∈ Fni×ni and n1 + · · ·nk = n (’block

upper triangular’), then φ(A) =

φ(A1) ∗
. . .

φ(Ak)

.
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Exercise 2.11. Let A ∈ Fn×n.

a. Let φ(x) ∈ F[x] with nonzero constant term and φ(A) = 0. Show that A is invertible.

b. Let A5 = 0. Show that the matrix φ(A) is invertible, where φ(x) = x4 − x3 + x2 − x+ 1.

Exercise 2.12. The conclusion in question b. is called Lagrange’s Theorem. For F = R, it says
that through n distinct points of the plane there passes a unique polynomial curve of degree at most
n− 1, analogous to the fact that through two distinct points of the plane there passes a unique line.
Let λ1, · · · , λn ∈ F be distinct. Consider the vector space Fn−1[x] of all polynomials of degree at
most n− 1 and the map

f : Fn−1[x] → Fn, f(φ(x)) = (φ(λ1), · · · , φ(λn)).

a. Show that the map f is linear, one-to-one, and onto.

b. Show that for every a1, · · · , an ∈ F there exists a unique φ(x) ∈ Fn−1[x] such that φ(λ1) =
a1, · · · , ϕ(λn) = an.

c. Find a polynomial φ(x) such that φ(1) = 2, φ(2) = 1, φ(−1) = 1.

d. Show that the φ(x) of subquestion b. is given by the relation φ =
n∑

j=1
ajφj(x), where

φj(x) =

n∏
k=1,k ̸=j

x− λk
λj − λk

.

Exercise 2.13. Let A ∈ Rn×n and B =

(
A In
0 A

)
∈ R2n×2n.

a. Show that f(B) =

(
f(A) f ′(A)
0 f(A)

)
for every f(x) ∈ R[x], where f ′(x) is the derivative of

f(x).

b. Show that if (A− In)
2013(A− 2In)

2014 = 0, then (B − I2n)
2014(B − 2I2n)

2015 = 0.

Exercise 2.14. Show that for every A ∈ Fn×n there exists a nonzero φ(x) ∈ F[x] of degree at
most n2 such that φ(A) = 0.
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Exercise 2.15. Let A,B, P ∈ Fn×n such that B = P−1AP . Show that φ(B) = P−1φ(A)P for
every φ(x) ∈ F[x].

Exercise 2.16. Let a1, · · · , an ∈ R. Set

ei =
∑

1≤t1<···<ti≤n

at1at2 · · · ati , i = 1, · · · , n.

For example, if n = 3, then

e1 = a1 + a2 + a3, e2 = a1a2 + a1a3 + a2a3, e3 = a1a2a3.

Show that if ei > 0 for each i = 1, · · · , n, then ai > 0 for each i = 1, · · ·n.

Exercise 2.17. Examinewhich of the following statements are true. In each case justify your answer
with a proof or counterexample. Let f(x), g(x), h(x) ∈ F[x].

a. If f(x)
∣∣g(x)h(x), then f(x)∣∣g(x) or f(x)∣∣h(x).

b. Let f(x) be irreducible. If f(x)
∣∣g(x)h(x), then f(x)∣∣g(x) or f(x)∣∣h(x).

c. If f(x)
∣∣h(x) and g(x)∣∣h(x), then f(x)g(x)∣∣h(x).

d. If f(x)
∣∣h(x), g(x)∣∣h(x) and gcd(f(x), g(x)) = 1, then f(x)g(x)

∣∣h(x).
e. Let A ∈ Fn×n. If f(A) = g(A) = 0, then f(x), g(x) are not relatively prime.
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CHAPTER 3

EIGENVALUES AND EIGENVECTORS

3.1 Eigenvalues, eigenvectors and eigenspaces of a matrix

3.1.1 Eigenvalues and eigenvectors of a matrix

Definition 3.1.1. Let A ∈ Fn×n, λ ∈ F and X ∈ Fn×1, X 6= 0. If the relation

AX = λX, (3.1)

holds, we say that λ is an eigenvalue of A and X is a corresponding eigenvector of A associated
with the eigenvalue λ.

Example 3.1.1. Let

A =

1 −2 2
0 −3 4
0 −2 3

 , X =

2
1
1

 , Y =

1
2
1

 , Z =

1
1
2

 .

i. We have AX = X , hence 1 is an eigenvalue of A and X is a corresponding eigenvector.

ii. We have AY = −Y , hence −1 is an eigenvalue of A and Y is an eigenvector.

31
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iii. We haveAZ =

3
5
4

. There is no λ ∈ R such that λZ = AZ, hence Z is not an eigenvector

of A.

Example 3.1.2. Let the matrix

A =

(
1 3
4 2

)
∈ R2×2.

We will find the eigenvalues and eigenvectors of A.

Proof. Let X =

(
x
y

)
∈ R2×1 and λ ∈ R. From relation (3.1) we have:

AX = λX ⇔
(
x+ 3y
4x+ 2y

)
=

(
λx
λy

)
⇔


x+ 3y = λx

4x+ 2y = λy

⇔


(1− λ)x+ 3y = 0

4x+ (2− λ)y = 0

The system has a nontrivial solution if and only if:

det
(
1− λ 3
4 2− λ

)
= 0 ⇒ (1− λ)(2− λ)− 12 = λ2 − 3λ+ 10 = 0.

Hence the eigenvalues of A are:
λ = 5 and λ = −2.

Now we find the corresponding eigenvectors:

i. For λ = −2: From the system we get 3x+ 3y = 0 ⇒ y = −x, hence:

V (−2) =

{(
x
−x

)
: x ∈ R

}
=

〈(
1
−1

)〉
.

ii. For λ = 5: From −4x+ 3y = 0 ⇒ y = 4
3x, hence:

V (5) =

{(
x
4
3x

)
: x ∈ R

}
=

〈(
1
4
3

)〉
.
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Example 3.1.3. We consider the matrix

A =

(
0 1
−1 0

)
∈ F2×2.

We distinguish the following cases:

a. Assume that A ∈ R2×2 and let λ ∈ R and X =

(
x
y

)
∈ R2×1. Then:

AX = λX ⇔
(
y
−x

)
=

(
λx
λy

)
⇒

{
λx− y = 0

x+ λy = 0

The determinant of the system is:

det
(
λ −1
1 λ

)
= λ2 + 1 6= 0, for every λ ∈ R.

Hence, there are no eigenvalues and eigenvectors of A over R.

b. If A ∈ C2×2, then for λ ∈ C and X =

(
x
y

)
∈ C2×1, we have:

AX = λX ⇔
(
y
−x

)
=

(
λx
λy

)
⇒

{
λx− y = 0

x+ λy = 0

The system has a nonzero solution if and only if:

det
(
λ −1
1 λ

)
= λ2 + 1 = 0 ⇒ λ = i or λ = −i.

i. For the eigenvalue λ = i, from ix− y = 0 ⇒ y = ix. Hence:

V (i) =
{
X ∈ C2×1 | y = ix

}
=

{(
x
ix

)}
=

〈(
1
i

)〉
is the set of eigenvectors of A corresponding to the eigenvalue λ = i.

ii. For the eigenvalue λ = −i, from −ix− y = 0 ⇒ y = −ix. Hence:

V (−i) =
{
X ∈ C2×1 | y = −ix

}
=

{(
x

−ix

)}
=

〈(
1
−i

)〉
is the set of eigenvectors of A corresponding to the eigenvalue λ = −i.
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Properties 3.1.1. Let A ∈ Fn×n, λ ∈ F. The following are equivalent:

i. λ is an eigenvalue of A.

ii. There exists X ∈ Fn×1 with X 6= 0 such that (A− λIn)X = 0.

iii. det(A− λIn) = 0.

Proof. • i. ⇒ ii.: By definition, there existsX 6= 0 such that

AX = λX ⇐⇒ (A− λIn)X = 0.

• ii. ⇒ iii.: The implication follows from the well-known proposition:

If B ∈ Fn×n and BX = 0 has a nonzero solution, then detB = 0.

• iii. ⇒ i.: If det(A− λIn) = 0, then there exists X 6= 0 with

(A− λIn)X = 0 ⇒ AX = λX,

hence λ is an eigenvalue.

Corollary 3.1.1. i. A matrix A ∈ Fn×n is invertible if and only if 0 is not an eigenvalue of A.

ii. If A is upper or lower triangular with diagonal entries a1, . . . , an, then:

det(A− λIn) = 0 ⇔
n∏

i=1

(ai − λ) = 0.

That is, λ is an eigenvalue of A if and only if λ = ai for some i.

iii. λ is an eigenvalue of A if and only if it is an eigenvalue of At.

Proof. i. The proof is left as an exercise to the reader.

ii. The proof is left as an exercise to the reader.

iii. From:
det(A− λIn) = det

(
(A− λIn)t

)
= det(At − λIn),

we conclude that λ is an eigenvalue of At.
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Example 3.1.4. We observe that 2 is an eigenvalue of the matrix:

A =

0 2 3
2 0 3
1 0 2

 ,

since:

det(A− 2I3) = det

−2 2 3
2 −2 3
1 0 0

 = 0.

Also, 0 is not an eigenvalue of A because:

detA = 6 6= 0.

3.1.2 Eigenspaces of a matrix

Definition 3.1.2. LetA ∈ Fn×n and let λ be an eigenvalue ofA. The eigenspace ofA correspond-
ing to λ is the set:

VA(λ) =
{
X ∈ Fn×1 | AX = λX

}
.

Observation 3.1.1. i. VA(λ) is the set of eigenvectors of A corresponding to λ, together with
the zero vector.

ii. VA(λ) is a subspace of Fn×1, since it is the solution set of the homogeneous system

(A− λIn)X = 0.

Theorem 3.1.1. Let A ∈ Fn×n and let λ ∈ F be an eigenvalue of A. Then:

dimVA(λ) = n− rank(A− λIn).

Proof. Consider the linear map

LB : Fn×1 → Fn×1, LB(X) = BX,

where
B = A− λIn.

Then:

i. dim kerLB + dim ImLB = n (Dimension Theorem),
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ii. dim ImLB = rankB.

Since kerLB = VA(λ), we obtain:

dimVA(λ) = dim kerLB = n− rank(A− λIn).

3.1.3 Properties of eigenspaces

Proposition 3.1.1. Let λ1, . . . , λs be distinct eigenvalues of the matrix A andX1, . . . , Xs ∈ Fn×1

with Xi ∈ VA(λi) for each i ∈ {1, . . . , s}. If

X1 + · · ·+Xs = 0,

then
X1 = X2 = · · · = Xs = 0.

Proof. We will use induction on s.

- Base case: For s = 1, clearly X1 = 0.

- Inductive step: Assume the statement holds for s−1. SupposeX1+ · · ·+Xs = 0 with each
Xi ∈ VA(λi). Then:

AX1 + · · ·+AXs = A(X1 + · · ·+Xs) = A(0) = 0,

hence:
λ1X1 + · · ·+ λsXs = 0.

Subtract the relation λ1(X1 + · · ·+Xs) = 0:

(λ1X1 + · · ·+ λsXs)− λ1(X1 + · · ·+Xs) = 0

⇐⇒ (λ2 − λ1)X2 + · · ·+ (λs − λ1)Xs = 0.

For i ≥ 2, we have
(λi − λ1)Xi ∈ VA(λi)

and since the eigenvalues are distinct,

λi 6= λ1 ⇒ λi − λ1 6= 0.
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Therefore, by the inductive hypothesis we get

X2 = · · · = Xs = 0

and from the original assumption it follows thatX1 = 0.

Corollary 3.1.2. Eigenvectors of a matrix A corresponding to distinct eigenvalues are linearly
independent.

Proof. Let X1, . . . , Xs be eigenvectors of A corresponding to distinct eigenvalues λ1, . . . , λs, re-
spectively. If

m1X1 + · · ·+msXs = 0

for somemi ∈ F, then by Proposition 3.1.1 we have

miXi = 0

that ismi = 0, since Xi 6= 0. Hence the vectors are linearly independent.

Application 3.1.1. Let X,Y be eigenvectors of the matrix A corresponding to different eigenval-
ues. Show that aX + bY is not an eigenvector of A, if ab 6= 0.

Proof. Assume AX = rX and AY = mY with r 6= m, and that aX + bY is an eigenvector for
some eigenvalue λ. Then:

A(aX + bY ) = λ(aX + bY )

⇒ arX + bmY = aλX + bλY

⇒ (ar − aλ)X + (bm− bλ)Y = 0.

SinceX,Y are eigenvectors with distinct eigenvalues, they are linearly independent (by Corollary
3.1.2), hence the corresponding coefficients must be zero:

ar − aλ = 0 ⇒ λ = r

bm− bλ = 0 ⇒ λ = m⇒ r = m

a contradiction. Therefore aX + bY is not an eigenvector if ab 6= 0.
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Proposition 3.1.2. LetA ∈ Fn×n, φ(x) ∈ F[x], let λ be an eigenvalue ofA andX a corresponding
eigenvector. Then φ(λ) is an eigenvalue of the matrix φ(A) andX is a corresponding eigenvector.
That is:

VA(λ) ⊆ Vφ(A)(φ(λ)).

Proof. By assumption we have AX = λX . Note:

A2X = A(AX) = A(λX) = λ(AX) = λ2X.

We generalize by induction on the exponent.

Claim: For everym ∈ N we have: AmX = λmX .

Proof of Claim:

• Base case: Form = 1, it holds immediately: AX = λX .

• Step: Assume AmX = λmX . Then:

Am+1X = A(AmX) = A(λmX) = λm(AX) = λm · λX = λm+1X.

Hence the claim holds for everym ∈ N.

Now let φ(x) = φmx
m + · · ·+ φ0. Then:

φ(A)X = (φmA
m + · · ·+ φ0In)X = (φmλ

m + · · ·+ φ0)X = φ(λ)X.

Since X 6= 0, it is an eigenvector of φ(A) for the eigenvalue φ(λ).

Example 3.1.5. Attention! The inclusion is not equality in general. If

A =

(
1 0
0 −1

)
then:

VA(1) =

〈(
1
0

)〉
.
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But if φ(x) = x2, then
φ(A) = A2 = I2,

and:

Vφ(A)(1) =

〈(
1
0

)
,

(
0
1

)〉
= R2×1.

Hence
VA(1) ⫋ Vφ(A)(1).

Example 3.1.6. a. If
(
1
2

)
is an eigenvector of a matrix A for eigenvalue −1, then it is also an

eigenvector of the matrix A1821 + 10A, with eigenvalue:

(−1)1821 + 10(−1) = −1 + (−10) = −11.

b. IfA ∈ F2×2 has eigenvalues 2 and−3, then for φ(x) = x2+5, the eigenvalues of φ(A) are:

φ(2) = 22 + 5 = 9, φ(−3) = 9 + 5 = 14.

c. If B is a matrix with eigenvalues −1 and 1, then the matrix B2 has the unique eigenvalue 1,
since:

(−1)2 = 1, 12 = 1.

3.2 Eigenvalues, eigenvectors and linear maps

Definition 3.2.1. Let f : V → V be a linear map, λ ∈ F and v ∈ V with v 6= 0. If

f(v) = λv,

then λ is called an eigenvalue of f and v is an eigenvector of f corresponding to the eigenvalue λ.

If λ is an eigenvalue of f , then the corresponding eigenspace of f is the set:

Vf (λ) = {v ∈ V | f(v) = λv}.
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Observation 3.2.1. If f : V → V is a linear map and λ is an eigenvalue of it, then:

Vf (λ) = ker(f − λ · 1V ) ≤ V.

Proposition 3.2.1. Let f : V → V be a linearmap. If v̂ is any ordered basis ofV andA = (f : v̂, v̂),
then:

dimVf (λ) = dimV − dim Im(f − λ1V ) = dimV − rank(A− λIn).

Example 3.2.1. Consider the linear map f : R3 → R3, f(x, y, z) = (0, 0, x + y). Find a basis of
each eigenspace.

Proof. We look for (x, y, z) ∈ R3 such that:

f(x, y, z) = λ(x, y, z), λ ∈ R.

From:
(0, 0, x+ y) = (λx, λy, λz)

we get the system: 

λx = 0

λy = 0

λz = x+ y

.

The system has a nonzero solution if and only if:

det

λ 0 0
0 λ 0
1 1 −λ

 = 0 ⇔ λ = 0.

Hence, from the first two equations we have x = −y. Therefore:

Vf (0) =
{
(x,−x, z) ∈ R3 | x, z ∈ R

}
= 〈(1,−1, 0), (0, 0, 1)〉 .

The set {(1,−1, 0), (0, 0, 1)} is linearly independent, hence it is a basis of the eigenspace Vf (0).

Attention to this specific example!
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Example 3.2.2. Let V = R2[x] and f : R2[x] → R2[x], f(φ(x)) = φ(x) +φ′(x) be a linear map.
Find a basis for each eigenspace of f .

Proof. Let φ(x) = ax2 + bx+ c ∈ R2[x]. Then:

f(φ(x)) = φ(x) + φ′(x) = ax2 + bx+ c+ 2ax+ b = ax2 + (2a+ b)x+ (b+ c).

If f(φ(x)) = λ · φ(x), then:

ax2 + (2a+ b)x+ (b+ c) = aλx2 + bλx+ cλ.

Thus we get the system: 

a(1− λ) = 0

2a− b(1− λ) = 0

b+ c(1− λ) = 0

The system has a nonzero solution if and only if:

det

1− λ 0 0
2 1− λ 0
0 1 1− λ

 = 0 ⇔ λ = 1.

For the eigenvalue λ = 1we have a = b = 0, hence Vf (1) = 〈1〉 and the basis of the eigenspace
is {1}.

Proposition 3.2.2. Let f : V → V be a linear map and A = (f : â, â) with respect to some basis â
of V , and λ ∈ F. Then:

1. i. λ is an eigenvalue of f if and only if it is an eigenvalue of A.

2. ii. If v ∈ V , then v ∈ Vf (λ) if and only if [v]â ∈ VA(λ).

3. iii. The set {v1, . . . , vm} is a basis of Vf (λ) if and only if

{[v1]â, . . . , [vm]â}
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1 is a basis of VA(λ).

Proof. i. Let λ be an eigenvalue of f . Then there exists v 6= 0 such that

f(v) = λv ⇐⇒ (f − λ1V )(v) = 0,

that is, f − λ1V is not invertible, hence A− λIn is not invertible, i.e.

det(A− λIn) = 0,

so λ is an eigenvalue of A.

ii. We have
v ∈ Vf (λ) ⇔ f(v) = λv ⇔ A[v]â = λ[v]â ⇔ [v]â ∈ VA(λ).

iii. The map v 7→ [v]â is an isomorphism g : V → Fn, and by (ii) it restricts to an isomorphism
Vf (λ) → VA(λ).

Example 3.2.3. Let V = R2[x], â = (a1, a2, a3) with

a1 = 1, a2 = x+ 1, a3 = x2 + 1

and let f : R2[x] → R2[x] such that:

A = (f : â, â) =

0 0 0
1 1 1
0 0 0

 .

i. Show that â is a basis of V .

ii. Is it true that a1 − a3 is an eigenvector?

iii. Find a basis for each eigenspace of f .

iv. Find a basis for each eigenspace of A.
1For example, if â = (a1, a2, a3) and v = a1 + 2a2 + 5a3, then

[v]â =

1
2
5

 .
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Proof. i. The polynomials a1, a2, a3 span (show why) V and their number equals dimR2[x] =
3, hence they are linearly independent and therefore a basis of R2[x].

ii. Note that f(a1) = f(a2) = f(a3) = a2. Take λ ∈ R such that

f(a1−a3) = λ(a1−a3) ⇔ f(a1)−f(a3) = λ(a1−a3) ⇔ λ(a1−a3) = 0 ⇔ a1 − a3 6= 0λ = 0.

Hence a1 − a3 is an eigenvector of f with corresponding eigenvalue 0.

iii. Let v ∈ V and λ ∈ R such that

f(v) = λv ⇐⇒ f(r1a1 + r2a2 + r3a3) = λ(r1a1 + r2a2 + r3a3)

⇐⇒ r1f(a1) + r2f(a2) + r3f(a3) = λr1a1 + λr2a2 + λr3a3

⇐⇒ λr1a1 + a2(λr2 − r1 − r2 − r3) + λr3a3 = 0

⇐⇒



λr1 = 0

r1 + r2(1− λ) + r3 = 0

λr3 = 0

Thus the system has a nonzero solution if and only if

det

λ 0 0
1 1− λ 1
0 0 λ

 = 0 ⇐⇒ λ = 0 or λ = 1.

Hence:

1.
Vf (0) = {r1a1 + r2a2 + r3a3 | r1 + r2 + r3 = 0} = 〈a2 − a1, a3 − a1〉

linearly independent (show why), so {a2 − a1, a3 − a1} is a basis of Vf (0).
2.

Vf (1) = {r1a1 + r2a2 + r3a3 | r1 = r3 = 0} = {r2a2} = 〈a2〉 .

Hence {a2} is a basis of Vf (1).

iv. By Proposition 3.2.2 we have that

{[a3 − a1]â, [a2 − a1]â}
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is a basis of VA(0) and

{[a2]â}

a basis of VA(1).

3.3 Characteristic polynomial

Definition 3.3.1. Let A ∈ Fn×n with A = (aij). The characteristic polynomial of A is:

χA(x) = det(A− xIn) = det

a11 − x · · · a1n
... . . . ...
an1 · · · ann − x

 .

Example 3.3.1. 1. If A = (a), then χA(x) = det(a− x) = a− x.

2. If A =

(
1 3
4 2

)
, then:

χA(x) = det
(
1− x 3
4 2− x

)

= (1− x)(2− x)− 12

= x2 − 3x− 10

= (x+ 2)(x− 5).
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3. If A =

2 3 4
0 1 3
0 4 2

, then:

χA(x) = det

2− x 3 4
0 1− x 3
0 4 2− x


= (2− x)[(1− x)(2− x)− 12]

= (2− x)(x+ 2)(x− 5).

Properties 3.3.1. Let A ∈ Cn×n. Then:

i. χA(x) = χAt(x)

ii. If A is upper or lower triangular with diagonal entries aii, then:

χA(x) = (−1)n(x− a11) · · · (x− ann).

iii. If Ai ∈ Fni×ni for i = 1, . . . , s and A ∈ Fn×n with

n = n1 + · · ·+ ns

of the form:

A =


A1 ∗ ∗ · · · ∗
0 A2 ∗ · · · ∗
...

... . . . · · · ∗
0 0 0 · · · As

 ,

then:
χA(x) = χA1(x) · · ·χAs(x).

Proof. i. We have:

χAt(x) = det(At − xIn) = det
(
(A− xIn)t

)
= det(A− xIn) = χA(x).

ii. Let A be upper triangular, that is:

A =


a11 ∗ · · · ∗
0 a22 · · · ∗
...

... . . . ...
0 0 · · · ann

 .
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Then:

χA(x) = det(A− xIn) = det


a11 − x ∗ · · · ∗

0 a22 − x · · · ∗
...

... . . . ...
0 0 · · · ann − x

 =
n∏

i=1

(aii − x).

iii. We use the following lemma:

Lemma 3.3.1. (a) If B1 ∈ Fn1×n1 , B2 ∈ Fn2×n2 and B =

(
B1 ∗
0 B2

)
, then:

detB = detB1 · detB2.

(b) If B =


B1 ∗ · · · ∗
0 B2 · · · ∗
...

... . . . ...
0 0 · · · Bs

 with Bi ∈ Fni×ni and n = n1 + · · ·+ ns, then:

detB =
s∏

i=1

detBi.

Proof of the lemma.

(a) IfB1 = In1 , then the property follows immediately by expanding along the first column
of B. Similarly for B2 = In2 by expanding along the last row. In the general case:(

B1 ∗
0 B2

)
=

(
In1 0
0 B2

)(
B1 ∗
0 In2

)
,

hence:
detB = detB1 · detB2.

(b) The general result follows by induction, applying (1) successively.

Back to the proof.

Since A has the form:

A =


A1 ∗ · · · ∗
0 A2 · · · ∗
...

... . . . ...
0 0 · · · As

 ,
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we have:

χA(x) = det(A− xIn) = det


A1 − xIn1 ∗ · · · ∗

0 A2 − xIn2 · · · ∗
...

... . . . ...
0 0 · · · As − xIns

 =
s∏

i=1

χAi(x).

Proposition 3.3.1. Let A ∈ Fn×n. Then:

• The leading coefficient of the characteristic polynomial χA(x) is (−1)n.

• If A = (aij), then:

χA(x) =

n∏
i=1

(aii − x) + ψ(x),

where degψ(x) ≤ n− 2.

Proof. From the definition of the characteristic polynomial:

χA(x) = det(A− xIn).

Applying Lemma 3.3.1, we know that the determinant expansion includes all terms of the form:

(−1)κ · (a1j1 − xδ1j1) · · · (anjn − xδnjn),

where (j1, . . . , jn) is a permutation of {1, . . . , n}.
The only term that contains xn is when (j1, . . . , jn) = (1, . . . , n), i.e. the product:

(a11 − x)(a22 − x) · · · (ann − x).

This yields a degree n polynomial with leading term (−x)n = (−1)nxn.
All other terms contain at most n − 1 occurrences of x, hence they contribute to a polynomial of
degree at most n− 1.
Moreover, by a direct observation:

n∏
i=1

(aii − x) = (−1)nxn + · · ·+ (−1)1 trAx+ detA,

so the difference:

χA(x)−
n∏

i=1

(aii − x)
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is a polynomial of degree at most n− 2, i.e.:

χA(x) =
n∏

i=1

(aii − x) + ψ(x), degψ(x) ≤ n− 2.

Proof. Consider the matrix

B = A− xIn =


a11 − x a12 · · · a1n

a21 a22 − x · · ·
...

...
... . . . ...

an1 an2 · · · ann − x

 .

Consider the term
(−1)κb1j1 · · · bnjn

with
(j1, . . . , jn) 6= (1, . . . , n).

Hence there exists t with jt 6= t, so
btjt 6= att − x.

Then btjt = ats for some t 6= s. Since ats lies in column s, in the original product there is no other
element from column s. Hence the element ass−x does not appear and therefore degψ(x) ≤ n−2.

It remains to show that in the sum of Lemma 3.3.1 the term (a11 − x) · · · (ann − x) appears
with coefficient +1. Indeed: (i) This term appears in the sum (by induction on n and expansion
along the first row), and (ii) it does not cancel with another one, due to its uniqueness.

Example 3.3.2. For the matrix A =

(
a b
c d

)
∈ F2×2 we have:

χA(x) = (a− x)(d− x)− bc.

Corollary 3.3.1. Let A ∈ Fn×n and χA(x) = (−1)nxn + an−1x
n−1 + · · ·+ a1x+ a0. Then:

1. detA = a0 and Tr(A) = (−1)n−1an−1,

2. if χA(x) = (λ1 − x) · · · (λn − x), then detA =
∏n

i=1 λi and Tr(A) =
∑n

i=1 λi.
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Proof. 1. It is clear that detA = χA(0) = a0. From Proposition 3.3.1 we have:

χA(x) =

n∏
i=1

(aii − x) + ψ(x), degψ(x) ≤ n− 2, A = (aij).

Hence, by matching coefficients of xn−1 we obtain:

an−1 = (−1)nTr(A) ⇒ Tr(A) = (−1)n−1an−1.

2. From the characteristic polynomial we have χA(0) = λ1 · · ·λn = detA. Also, from the
above:

Tr(A) = (−1)nan−1 = (−1)n(−1)n(λ1 + · · ·+ λn) = λ1 + · · ·+ λn.

Example 3.3.3. Let the matrix A =

(
1 3
4 2

)
∈ R2×2. From Corollary 3.3.1 (i) we have:

χA(x) = x2 − Tr(A)x+ detA = x2 − 3x− 10.

Moreover:

χA(x) = (5− x)(−2− x), i.e. the eigenvalues are λ1 = 5, λ2 = −2.

Hence, by (ii) of the corollary:

Tr(A) = λ1 + λ2 = 3, detA = λ1 · λ2 = −10.

Proposition 3.3.2. If A,B ∈ Fn×n are similar, then χA(x) = χB(x).

Proof. Since A is similar to B, there exists an invertible P ∈ Fn×n such that B = P−1AP . It is
left as an exercise to the reader to show that for every φ(x) ∈ F[x] we have:

φ(B) = P−1φ(A)P.

Therefore:

χB(x) = det(B − xIn) = det(P−1AP − xIn) = det(P−1(A− xIn)P ) = χA(x).

Definition 3.3.2. Let f : V → V be a linear map and A = (f : â, â) for some ordered basis â of
V . The characteristic polynomial of f is defined by:

χf (x) = χA(x).
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3.4 Chapter 3 Exercises.

Group A : 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 18, 19, 20, 21, 32, 34, 35 ,
Group B: 7, 8, 12, 15, 16, 17, 22, 23, 24, 25, 26, 29, 30, 32, 36 ,
Group C : 27, 28

Exercise 3.1. a. Let

A =


1 1 1 −5
1 1 −5 1
1 −5 1 1
−5 1 1 1

 ∈ C4×4 and X =


1
1
1
1

 ∈ C4×1.

Is X an eigenvector of A? Is 6 an eigenvalue of A?

b. Find the eigenvalues and eigenvectors of A =

1 −2 2
0 −3 4
0 −2 3

 ∈ R3×3.

Exercise 3.2. Let A ∈ Fn×n and φ(x) ∈ F[x].

a. Show that if λ ∈ F is an eigenvalue of A with corresponding eigenvectorX , then φ(λ) is an
eigenvalue of φ(A) with corresponding eigenvector X .

b. Let A =

 2 0 3
−3 −2 4
1 0 3

. Find (without computations) an eigenvalue and a corresponding

eigenvector of B = A1821 + I3.

c. * Let F = C. Show that for every eigenvalue λ of φ(A) there exists an eigenvalue λi of A
such that λ = φ(λi).

Exercise 3.3. Let A =

 5 3 3
−3 −1 −3
−3 −3 −1

 ∈ R3×3 and X =

 1
−1
0

 ∈ R3×1.

a. Is it true that X is an eigenvector of A? If yes, find two different bases of the eigenspace
VA(λ), where λ is the eigenvalue corresponding to the above eigenvector.

b. Is it true that X is an eigenvector of A1821 + I3?
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c. Find a matrix B ∈ R3×3 with X ∈ VB(3).

Exercise 3.4. Find the eigenvectors of A =

(
1 1
−2 −1

)
∈ F2×2 in the cases

a. F = R

b. F = C.

Exercise 3.5. Find a basis for each eigenspace of the matrices

a. A =

0 0 0
1 1 1
0 0 0

 ∈ R3×3.

b. B =

2 1 0
0 1 −1
0 2 4

 ∈ R3×3.

Exercise 3.6. Compute, for the various values of a, the dimensions of the eigenspaces of A =1 a 4
0 1 0
0 2 3

 ∈ R3×3.

Exercise 3.7. Let A = (aij) ∈ Fn×n such that for every j = 1, · · · , n, we have
n∑

i=1
aij = 1. Show

the following.

a. There exists a nonzero X ∈ Fn×1 such that AX = X .

b. If A is invertible and A−1 = (bij), then for every j = 1, · · · , n, we have
n∑

i=1
bij = 1.

Exercise 3.8. Let λ 6= µ be two eigenvalues of a matrixA ∈ Fn×n with corresponding eigenvectors
u, v. Then

a. u, v are linearly independent and
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b. for every a, b ∈ F− {0}, au+ bv is not an eigenvector of A.

Exercise 3.9. a. Is it true that 2 is an eigenvalue of the linear map

f : R4 → R4, f(x, y, z, w) = (x+ w, 2y + z, 3z + w, x+ w) ;

Is it true that
(
1, 0,−1, 2

)
is an eigenvector of f?

b. Find the eigenvalues and eigenvectors of the linear map

f : R3 → R3, f(x, y, z) = (x− y.2x+ 3y + 2z, x+ y + 2z).

c. Let f : F2 → F2 be the linear map defined by f(e1) = −e2 and f(e2) = e1, where
ê = {e1, e2) is the standard basis of F2. Compute the eigenvalues and eigenvectors of f
when i. F = R and ii. F = C. Give a geometric interpretation of the result in i. .

Exercise 3.10. a. Find the possible eigenvalues of the linear map f : V → V in each of the
cases

i. f2 = 1V ,
ii. f2 = f .

b. Then prove the following statement. If φ(f) = 0 for some φ(x) ∈ F[x], then every eigen-
value of the F-linear map f : V → V is a root of φ(x).

c. Prove the following statement. If φ(A) = 0 for some φ(x) ∈ F[x] and A ∈ Fn×n, then
every eigenvalue of A is a root of φ(x).

Exercise 3.11. a. For which a ∈ R is (1, 1) an eigenvector of the linear map

f : R2 → R2, f(x, y) = (x+ ay, 2x+ y) ;

b. Find the eigenvalues and eigenvectors of the linear maps

1. f : R3 → R3, f(x, y, z) = (4x, 2y − 5z, y − 2z) ,
2. g : C3 → C3, f(x, y, z) = (4x, 2y − 5z, y − 2z) .

Exercise 3.12. A linear map f : R2[x] → R2[x] is given, with f(x2 + x) = 2x2 +2x, f(x+1) =
2x+ 3 and f(1) = x+ 3.



Linear Algebra II Konstantinos Bizanos

a. Find the eigenvectors of f and a basis for each eigenspace of f .

b. Is it true that f is an isomorphism?

c. Is it true that f4 − 6f − 4 · 1R2[x] is an isomorphism?

d. Find two linearly independent eigenvectors of f4 − 6f − 4 · 1R2[x].

Exercise 3.13. Find the eigenvalues and eigenvectors of the linear maps

a. g : R2[x] → R2[x], g(ϕ(x)) = ϕ(1)x

b. h : R2[x] → R2[x], h(ϕ(x)) = ϕ′(x), where ϕ′(x) is the derivative of ϕ(x).

Exercise 3.14. Let A ∈ C3×3 with χA(x) = −x3 + 3x2 − 2x.

a. Is A invertible?

b. Is (A− 3I3)(A− 4I3) invertible?

c. Compute the determinant of A2 − 2A− 15I3.

d. Is it true that there exists an ordered basis â such that for the linear map

f : C3 → C3, f(x, y, z) = (x+ 2y + 3z, 2y + 3z, 3z) ,

we have (f : â, â) = A?

e. Find χA2(x).

f. Is it true that there exists B ∈ C3×3 such that AB −BA = Ak for some positive integer k?

g. Is it true that there exists an integer k > 1 with Ak = At, where At is the transpose of A?

Exercise 3.15. Let A,B ∈ Fn×n, where A is invertible. Show that χAB(x) = χBA(x). (Note.
The conclusion also holds without the assumption that A is invertible, see exercise 27.)

Exercise 3.16. Let A ∈ Fn×n be invertible and xA(x) = (−1)nxn + an−1x
n−1 + · · ·+ a1x+ a0,

where a0 6= 0. Show that

χA−1(x) = (−1)n
[
xn +

an−1

a0
xn−1 + · · ·+ a1

a0
+

(−1)n

a0

]
.
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Exercise 3.17. Let

A =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
0 0 · · · 1 −an−1

 ∈ Fn×n.

a. Show that the characteristic polynomial of A is (−1)n(xn + an−1x
n−1 + · · ·+ a0).

b. Show that if λ is an eigenvalue of A, then
1
λ
...

λn−1


is an eigenvector of At.

Exercise 3.18. Find the characteristic polynomial of

A =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
1 0 0 0 · · · 0


∈ Fn×n.

Exercise 3.19. Find the eigenvalues of the matrix

C =


1 2 3 4 5
3 2 1 0 3
0 0 1 2 2
0 0 0 2 2
0 0 0 3 3

 ∈ C5×5.

Exercise 3.20. Let A ∈ Cn×n be invertible.

a. Show that λ is an eigenvalue of A if and only if
1

λ
is an eigenvalue of A−1.
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b. Suppose A is similar to A−1 and n is odd. Show that 1 or −1 is an eigenvalue of A.

Exercise 3.21. Let A ∈ C4×4 such that χA(x) ∈ R[x], detA = −13, Tr(A) = 4 and one
eigenvalue of A is 2− 3i. Find the eigenvalues of A.

Exercise 3.22. Let A ∈ Cn×n be invertible. Show that if A is similar to −A, then n is even,
n = 2m, and the characteristic polynomial of A is of the form (x2 − ρ1) · · · (x2 − ρm), where
n ≥ 2.

Exercise 3.23. Find the eigenspaces of the linear map f : Rn×n → Rn×n, A 7→ At, where n ≥ 2.

Exercise 3.24. Consider the diagonal matrices

A =

a1 . . .
an

 , B =

b1 . . .
bn

 ∈ Fn×n.

Show that the following statements are equivalent.

a. A,B are similar.

b. There exists a permutation σ ∈ Sn such that bi = aσ(i) for each i = 1, · · · , n.

c. χA(x) = χB(x).

Exercise 3.25. Let a, b ∈ F. Find the characteristic polynomial, the eigenvalues, and the eigenvec-
tors of

A =


a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

...
b b b · · · a

 ∈ Fn×n.

Exercise 3.26. Let a, b ∈ F with a 6= b. Show that the characteristic polynomial of

An =


0 a a · · · a
b 0 a · · · a
b b 0 · · · a
...

...
...

...
b b b · · · 0

 ∈ Fn×n

is
(−1)n

a− b
[a(x+ b)n − b(x+ a)n].
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Exercise 3.27. Let A ∈ Fm×n and B ∈ Fn×m. Show that (−1)nxnχAB(x) = (−1)mxmχBA(x).
(Consequently, ifm = n, then χAB(x) = χBA(x).)

Exercise 3.28. Let a1, · · · , an, b1, · · · , bn ∈ F and C = (aibj) ∈ Fn×n. Using the previous
exercise (or otherwise) find χC(x) and the eigenvalues of C.

Exercise 3.29. Let n ≥ 1 and

A =


0 0 · · · 0 1
0 0 · · · 1 0
...

... . . . ...
...

0 1 · · · 0 0
1 0 · · · 0 0

 ∈ F2n×2n.

Find the characteristic polynomial, the eigenvalues, and the eigenvectors of A. Find the dimension
of each eigenspace of A.

Exercise 3.30. Let A,B ∈ Cn×n, C =

(
A B
B A

)
∈ C2n×2n and D =

(
A −B
B A

)
∈ C2n×2n.

Then

a. χC(x) = χA+B(x) · χA−B(x).

b. χD(x) = χA+iB(x) · χA−iB(x).

c. If the eigenvalues of A are λ1, · · · , λn, then the eigenvalues of the matrix
(
A A
A A

)
are

2λ1, · · · , 2λn, 0, · · · 0︸ ︷︷ ︸
n

.

Exercise 3.31. Let a, b ∈ R. It is given that the matrices A,B ∈ R3×3 are similar, where

A =

1 a 1
a 1 b
1 b 1

 , B =

0 0 0
0 1 0
0 0 2

 .

Find a, b.
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Exercise 3.32. Find the characteristic polynomial of the linear map f2 = f ◦ f , where

f : R3 → R3, f(x, y, z) = (0, x, y).

Exercise 3.33. Find the characteristic polynomial of the linear map f2 = f ◦ f , where

f : R3 → R3, f(x, y, z) = (0, x, y).

Exercise 3.34. An ordered basis û = (u1, u2, u3) of R3 is given and the linear map f : R3 → R3

with corresponding matrix A = (f : û, û) =

1 1 0
0 0 1
1 1 1

.

a. Find χf (x) and χf2(x).

b. Is it true that u1 + u2 + 2u3 is an eigenvector of f? Same question for u1.

c. Find a basis for each eigenspace of A.

d. Find a basis for each eigenspace of f .

e. We know that Vf (0) ⊆ Vf2(0). Is it true that we have equality?

f. Is it true that there exists a linear map g : R3 → R3 such that f(g(v)) = v for every v ∈ R3?

Exercise 3.35. Let A =

(
1 2
0 3

)
and f : R2×2 → R2×2, f(X) = AX −XA. After showing that

f is linear, find a basis for each eigenspace of f .

Exercise 3.36. Consider the vector spaceF (R,R) of functionsR → R and the subspace V spanned
by the functions sinx, cosx. Find a basis of each eigenspace of the linear maps

a. f : V → V, f(ϕ(x)) = ϕ′(x) (derivative),

b. g : V → V, g(ϕ(x)) = ϕ′′(x) (second derivative).

Exercise 3.37. Show that for each

a. A ∈ C2×2, χA(x) = x2 − Tr(A)x+ detA,
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b. A ∈ C3×3, χA(x) = −x3 + Tr(A)x2 − Tr(adj(A))x+ detA.

Exercise 3.38. Examine which of the following statements are true. In each case give a proof or a
counterexample.

a. If λ is an eigenvalue of A ∈ Fn×n and µ an eigenvalue of B ∈ Fn×n, then λ + µ is an
eigenvalue of A+B.

b. If λ is an eigenvalue ofA ∈ Fn×n andµ an eigenvalue ofB ∈ Fn×n, then λµ is an eigenvalue
of AB.

c. Every A ∈ R2×2 has at least one real eigenvalue.

d. Every A ∈ R3×3 has at least one real eigenvalue.

e. If 2 is an eigenvalue of A2, where A ∈ Rn×n, then
√
2 is an eigenvalue of A.

f. If χA(x) = χB , where A,B ∈ Fn×n, then A,B are similar.

g. Let A,B ∈ Fn×n. Then ϕ(A), ϕ(B) are similar for every ϕ(x) ∈ F[x].

h. There exists A ∈ F3×3 with eigenvalues 0, 1, 2, 3.

i. If v is an eigenvector of the linear map f : V → V and v ∈ ker f , then 0 is an eigenvalue of
f .

j. LetA ∈ R3×3 with χA(x) = −(x2−1)(x−5). Then there exists a linear map f : R3 → R3

and an ordered basis â of R3 with f(1, 0, 0) = 3 · (1, 0, 0) and (f : â, â) = A.

k. Let A ∈ Fn×n. If −1 is an eigenvalue of A, then there exists a nonzero X ∈ Fn×1 with
A2X = X .



CHAPTER 4

DIAGONALIZABILITY

4.1 Diagonalizable Matrices

Definition 4.1.1. Let A ∈ Fn×n. We say that A is diagonalizable if there exists an invertible
matrix P ∈ Fn×n such that P−1AP = ∆, where ∆ is a diagonal matrix.

Observation 4.1.1. Let∆ = P−1AP with∆ = diag(a1, a2, . . . , an). Since similar matrices have
the same characteristic polynomial, we have:

χA(x) = χ∆(x) = (a1 − x)(a2 − x) · · · (an − x).

Here a1, a2, . . . , an are the eigenvalues of the matrix A.

Example 4.1.1. 1. Let A =

(
1 3
4 2

)
∈ R2×2 and P =

(
−1 3
1 4

)
. Then we observe that:

P−1AP = diag(−2, 5).

Hence the matrix A is diagonalizable.

2. Let A =

(
1 2
0 1

)
∈ R2×2. We will show that A is not diagonalizable. Indeed, if there

existed an invertible matrix P with:

P−1AP = diag(a1, a2),

59
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then, by Remark 4.1.1 and since the eigenvalues of A are a1 = a2 = 1, we would have to
have:

P−1AP = I2 ⇔ A = I2,

which is a contradiction.

3. Let A =

(
0 1
−1 0

)
∈ R2×2. The matrix A is not diagonalizable, because:

χA(x) = x2 + 1

has no roots in R. Hence A has no eigenvalues in R and, according to Remark 4.1.1, it is not
diagonalizable.

4. Let A =

(
0 1
−1 0

)
∈ C2×2. The matrix A is diagonalizable, since for the invertible matrix:

P =

(
−1 1
i i

)
we have:

P−1AP = diag(i,−i).

Question 4.1.1. The examples raise some basic questions. Let A ∈ Fn×n.

1. When is A diagonalizable?

2. If A is diagonalizable, how do we find matrices P and ∆ such that P−1AP = ∆?

If A ∈ Fn×n, we denote by A(i) the i-th column of A. For example, if

A =

(
1 −3
4 2

)
,

then:
A(1) =

(
1
4

)
, A(2) =

(
−3
2

)
.

With this notation we have:
A =

(
A(1), A(2), · · · , A(n)

)
.

i. If A,B ∈ Fn×n, then (AB)(i) = AB(i).
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ii. Let Ê = (E1, E2, · · · , En) be the standard ordered basis of Fn×1. Then I(i)n = Ei and in
fact A(i) = AEi.

Proof. i. If B = (B(1), B(2), · · · , B(n)), then:

AB = (AB(1), AB(2), · · · , AB(n)),

and from the definition of matrix multiplication we have:

(AB)(i) = AB(i).

ii. We observe that:
AEi = AI(i)n = (AIn)(i) = A(i).

Observation 4.1.2. LetA,P,∆ ∈ Fn×n with P invertible such that P−1AP = ∆, where∆ is not
necessarily diagonal. The following are equivalent:

i. The i-th column of P is an eigenvector of A with eigenvalue λ.

ii. The i-th column of∆ equals λEi.

Proof. Assume that P−1AP = ∆. Then:

AP = P∆.

i. If AP (i) = λP (i), then:

∆(i) = (P−1AP )(i) = P−1AP (i) = λP−1P (i) = λI(i)n = λEi.

ii. If ∆(i) = λEi, then:
P∆(i) = λPEi = λP (i),

so:
AP (i) = λP (i).

Since P is invertible, P (i) 6= 0.
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Theorem 4.1.1. 1st Diagonalizability Criterion Let A ∈ Fn×n. The following are equivalent:

i. A is diagonalizable.

ii. There exists a basis of Fn×1 consisting of eigenvectors of A.

Moreover, if {x1, x2, . . . , xn} is a basis of Fn×1 of eigenvectors ofAwith corresponding eigen-
values λ1, λ2, . . . , λn, then setting

P = (x1, x2, . . . , xn) ∈ Fn×n,

the matrix P is invertible and:

P−1AP = diag(λ1, . . . , λn).

Proof. i. → ii. Assume there exists an invertible P ∈ Fn×n such that P−1AP = ∆, where ∆ is
diagonal.
Since the i-th column of ∆ has the form λiEi, by Remark 4.1.2 it follows that the i-th column of
P , i.e. P (i), is an eigenvector of A corresponding to eigenvalue λi.
Since the columns of P form a basis (because P is invertible), we obtain a basis of Fn×1 consisting
of eigenvectors of A.

ii. → i. Now assume that {x1, x2, . . . , xn} is a basis of Fn×1 consisting of eigenvectors of A.
Thus:

Axi = λixi, for each i = 1, . . . , n.

Set P = (x1, x2, . . . , xn), so that P (i) = xi. Since the xi form a basis, P is invertible. By Remark
4.1.2, it follows that:

(P−1AP )(i) = λiEi,

hence P−1AP is diagonal.

Example 4.1.2. a. Let

A =

(
1 3
4 2

)
.

Then:

χA(x) = (x+ 2)(x− 5), VA(−2) =

〈(
−1
1

)〉
, VA(5) =

〈(
3
4

)〉
.
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The vectors (
−1
1

)
,

(
3
4

)
are linearly independent, since

det
(
−1 3
1 4

)
6= 0,

so they form a basis of R2×1 and A is diagonalizable. Setting:

P =

(
−1 3
1 4

)
,

we obtain that P is invertible and P−1AP = diag(−2, 5).

b. Let

A =

2 1 0
0 1 −1
0 2 4

 ∈ R3×3.

We have:

χA(x) = (2− x)2(3− x), VA(2) =

〈1
0
0

〉 , VA(3) =

〈 1
1
−2

〉 .
We only have two linearly independent eigenvectors, while we need three for diagonaliza-
tion, because we cannot produce a basis ofR3×1 from eigenvectors ofA. Therefore,A is not
diagonalizable.

c. Let

A =

1 −3 3
3 −5 3
6 −6 4

 ∈ R3×3.

We compute:

χA(x) = (2 + x)2(4− x), VA(−2) =

〈1
1
0

 ,

 1
0
−1

〉 , VA(4) =

〈1
1
2

〉 .
The three eigenvectors are linearly independent, hence they form a basis of R3×1 and A is
diagonalizable. Setting:

P =

1 1 1
1 0 1
0 −1 2

 ,

we have that P is invertible and:

P−1AP = diag(−2,−2, 4).
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Proposition 4.1.1. i. Let A ∈ Fn×n be diagonalizable and let φ(x) ∈ F[x] be a polynomial.
Then the matrix φ(A) is also diagonalizable.

ii. If A is diagonalizable and invertible, then the matrix φ(A−1) is also diagonalizable.

Proof. i. Since A is diagonalizable, there exists an invertible matrix P ∈ Fn×n such that:

P−1AP = ∆ = diag(λ1, . . . , λn).

Since φ is a polynomial, we have:

φ(P−1AP ) = φ(∆), and φ(P−1AP ) = P−1φ(A)P.

Thus:
P−1φ(A)P = φ(∆).

The matrix φ(∆) is also diagonal, since:

φ


λ1 0

. . .
0 λn


 =

φ(λ1) 0
. . .

0 φ(λn)

 .

Hence φ(A) is diagonalizable.

ii. Since A is invertible and diagonalizable, there exists an invertible P such that:

P−1AP = diag(λ1, . . . , λn), with λi 6= 0 for each i.

Then:
P−1A−1P =

(
P−1AP

)−1
= diag

(
1

λ1
, . . . ,

1

λn

)
.

So A−1 is also diagonalizable. Since φ is a polynomial, from part (i) it follows that φ(A−1)
is also diagonalizable.

4.2 The Major Diagonalizability Criterion

Lemma 4.2.1. If Xi ∈ V (λi) for i = 1, . . . , t and

X1 + · · ·+Xt = 0,

then
X1 = X2 = · · · = xt = 0.
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Proof. This result has been proved in Proposition 3.1.1.

Corollary 4.2.1. 4.2.2 Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof. This result has been proved in Corollary 3.1.2.

Corollary 4.2.2. Let A ∈ Fn×n and let λ1, λ2 be eigenvalues with λ1 6= λ2. Then:

VA(λ1) ∩ VA(λ2) = {0}.

Proof. The result follows immediately from Lemma 4.2.1.

Lemma 4.2.2. Let A ∈ Fn×n and let λ1, . . . , λt be distinct eigenvalues. Then:

i. If Bi is a basis of VA(λi) for each i = 1, . . . , t, then the set B1 ∪ · · · ∪Bt is a basis of

VA(λ1) + · · ·+ VA(λt).

ii. We have:

dim

(
t∑

i=1

VA(λi)

)
=

t∑
i=1

dimVA(λi).

Proof. i. Let Bi be a basis of VA(λi) with

Bi = {bi1 , . . . , bimi
}.

By the definition of the sum of subspaces we have:

t∑
i=1

VA(λi) =

〈
t⋃

i=1

Bi

〉
.

It suffices to show that
⋃t

i=1Bi is linearly independent. Let:

t∑
i=1

mi∑
j=1

aijbij = 0
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with aij ∈ F. By Corollary 4.2.2 and since eigenvectors belong to eigenspaces with different
eigenvalues, we have

mi∑
j=1

aijbij = 0, for each i = 1, . . . , t.

Since
Bi = {bi1 , . . . , bimi

}

is a basis, all coefficients aij are zero; hence the union is linearly independent.

ii. From (i) we have that the union of bases of the eigenspaces is a basis of the sum of the
eigenspaces. Therefore:

dim

(
t∑

i=1

VA(λi)

)
=

∣∣∣∣∣
t⋃

i=1

Bi

∣∣∣∣∣ =
t∑

i=1

dimVA(λi).

Theorem 4.2.1 (Major Diagonalizability Criterion). Let A ∈ Fn×n and let λ1, . . . , λk be the dis-
tinct eigenvalues of A. The following are equivalent:

i. A is diagonalizable.

ii. There exists a basis of Fn×1 consisting of eigenvectors of A.

iii. VA(λ1) + · · ·+ VA(λk) = Fn×1.

iv. dimVA(λ1) + · · ·+ dimVA(λk) = n.

v. The characteristic polynomial can be written as:

χA(x) = (−1)n(x− λ1)
n1 · · · (x− λk)

nk , with dimVA(λi) = ni.

Proof. • Statements i. and ii. are equivalent by Theorem 4.1.1.

• iii. ⇐⇒ iv. By Lemma 4.2.2, we have:

k∑
i=1

VA(λi) = Fn×1 ⇔ dim

(
k∑

i=1

VA(λi)

)
= n.

• ii⇒ iii. If there exists a basis of eigenvectors, then the eigenspaces cover the whole space.
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• iii. ⇒ ii. By Lemma 4.2.2, the union of bases of the eigenspaces is linearly independent, and
since it covers the whole space, it is a basis of Fn×1.

• i. ⇒ v. Since A is diagonalizable, it is similar to a diagonal matrix diag(a1, . . . , an), hence:

χA(x) = (a1 − x) · · · (an − x) = (−1)n
k∏

i=1

(x− λi)
ni .

And for each i:

dimVA(λi) = n− rank(A− λiIn) = n− rank(∆− λiIn) = ni.

• v. ⇒ iv. From the assumption dimVA(λi) = ni for each i, we obtain:

k∑
i=1

dimVA(λi) =
k∑

i=1

ni = n.

Corollary 4.2.3. If A ∈ Fn×n has n distinct eigenvalues, then it is diagonalizable.

Proof. The claim follows immediately from (iv) of Theorem 4.2.1

Example 4.2.1. Consider the matrix

A =

1 2 3
0 4 5
0 0 6

 ∈ R3×3.

Then, by Corollary 4.2.3, the matrixA is diagonalizable, since its eigenvalues are 1, 4, 6, which are
distinct.

Definition 4.2.1. Let λ be an eigenvalue of the matrix A. If (x − λ)m(λ) is the largest power of
x− λ dividing the characteristic polynomial χA(x), then:

• the number τ (λ) is called the algebraic multiplicity of λ,

• while d (λ) := dimVA(λ) is called the geometric multiplicity of λ.
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Theorem 4.2.2. Let A ∈ Fn×n and let λ be an eigenvalue of A. Then:

d (λ) ≤ τ (λ) ,

i.e. the geometric multiplicity of λ is less than or equal to its algebraic multiplicity.

Proof. Let τ (λ) be the algebraic multiplicity of λ, and let {v1, . . . , vt} be a basis of the eigenspace
VA(λ). By the Basis Extension Theorem, there exists a basis of Fn×1 of the form:

v̂ = (v1, . . . , vt, vt+1, . . . , vn).

Consider the linear map:
LA : Fn×1 → Fn×1, X 7→ AX.

Then the matrix of LA with respect to the basis v̂ is:

B = (LA : v̂, v̂) =

(
λIt ∗
0 ∗

)
.

This is in block upper-triangular form. From the properties of the characteristic polynomial (e.g.
Proposition 3.3.1), we have:

χB(x) = χλIt(x) · χ∗(x).

Hence,
(x− λ)t | χB(x) = χA(x)

since A and B are similar. 1 Therefore,

t ≤ τ (λ) .

4.3 Diagonalizable Linear Maps

Definition 4.3.1. A linear map f : V → V is called diagonalizable if there exists an ordered basis
â of V such that the matrix (f : â, â) is diagonal.

Observation 4.3.1. i. The map f is diagonalizable if and only if there exists a basis of V consisting
of eigenvectors of f .

ii. Let f : V → V be a linear map and let b̂ be an ordered basis of V . Then f is diagonalizable
if and only if the matrix

(
f : b̂, b̂

)
is diagonalizable.

1This holds because the matrix of LA with respect to the standard basis is A.
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Proof. i. If f is diagonalizable, then there exists an ordered basis â = (a1, . . . , an) of V with
(f : â, â) = diag(λ1, . . . , λn), i.e. f(ai) = λiai. Hence there exists a basis of eigenvectors.

Conversely, if â is a basis of eigenvectors, then the matrix A = (f : â, â) has a basis of Fn×1

consisting of eigenvectors and is diagonalizable (Theorem 4.1.1). Hence f is diagonalizable.

ii. If f is diagonalizable, then there exists a basis â such that A = (f : â, â) is diagonal. But
the matrices (f : â, â) and (f : b̂, b̂) are similar, hence the latter is also diagonalizable.

Conversely, if (f : b̂, b̂) is diagonalizable, then it is similar to a diagonal matrix, i.e. there exists
a basis â of V such that (f : â, â) is diagonal.

Example 4.3.1. Let f : R2 → R2 be the linear map given by:

f(x, y) = (x+ 3y, 4x+ 2y).

Let the basis â = (a1, a2), where a1 = (1,−1) and a2 = (3, 4). Then:

f(a1) = −2a1, f(a2) = 5a2.

That is, both are eigenvectors. Hence the matrix (f : â, â) is:(
−2 0
0 5

)
,

which is diagonal. Therefore, f is diagonalizable.

Reminder 4.3.1. Let f : V → V be a linear map, let â be an ordered basis of V , and let A = (f :
â, â). If λ is an eigenvalue of f , then the map:

φ : V → Fn×1, v 7→ [v]â

is a vector space isomorphism and moreover:

φ(Vf (λ)) = VA(λ).

Theorem 4.3.1 (Major Diagonalizability Criterion for linear maps). Let f : V → V be a linear
map and let λ1, . . . , λk be its distinct eigenvalues. The following are equivalent:

i. f is diagonalizable.

ii. There exists a basis of V consisting of eigenvectors of f .
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iii. Vf (λ1) + Vf (λ2) + · · ·+ Vf (λk) = V .

iv. dimVf (λ1) + · · ·+ dimVf (λk) = dimV .

v. χf (x) = (−1)n(x− λ1)
n1 · · · (x− λk)

nk with dimVf (λi) = ni for each i = 1, . . . , k.

Proof. • i. ⇔ ii. By Remark 4.3.1.

• i. ⇒ iii. If f is diagonalizable, then for a suitable basis â the matrix A = (f : â, â) is
diagonalizable, hence by Theorem 4.2.1 we have

∑
VA(λi) = Fn×1. By Reminder 4.3.1, it

follows that V =
∑
Vf (λi).

• iii. ⇒ i. (Exercise)

• iii. ⇒ iv. From the above, using Reminder 4.3.1 and Theorem 4.2.1, we obtain equality of
dimensions.

• iv. ⇒ iii. (Exercise)

• iv. ⇒ v. (Exercise)

4.4 Applications of Diagonalization

Diagonalization has wide applications: in computing powers of matrices, in recurrence relations of
sequences, in matrix roots, in systems of differential equations, and in many other problems.

Observation 4.4.1. If P−1AP = ∆ = diag(λ1, . . . , λn), then for everym ≥ 1:

(P−1AP )m = ∆m ⇔ P−1AmP = diag(λm1 , . . . , λ
m
n ).

Application 4.4.1 (Matrix Powers). Let

A =

2 −1 −1
0 −1 0
0 2 1

 .

Compute the matrix Am for everym ∈ N.
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Proof. With straightforward computations we find:

VA(−1) =

〈 0
−1
1

〉 , VA(1) =

〈1
0
1

〉 , VA(2) =

〈1
0
0

〉 .
The matrix A has three distinct eigenvalues, hence it is diagonalizable.

Set:

P =

 0 1 1
−1 0 0
1 1 0

 , with P−1AP = diag(−1, 1, 2).

Then for everym ∈ N we have:

Am = P · diag((−1)m, 1, 2m) · P−1.

Finally, we obtain:

Am =

2m 1− 2m 1− 2m

0 (−1)m 0
0 1− (−1)m 1

 .

Let us now consider the Fibonacci-type recurrence:

F1 = 1, F2 = 2, Fn+1 = Fn + Fn−1.

This sequence often appears in counting problems. For example:

How many binary sequences of length n do not contain two consecutive 1’s?

This problem translates into a recurrence, which can be analyzed via diagonalization of a suitable
matrix.

Application 4.4.2 (Recurrences – Fibonacci sequence). We have F1 = 1, F2 = 2, Fn+1 =
Fn + Fn−1 for every n ≥ 2. We observe that:(

Fn

Fn+1

)
=

(
0 1
1 1

)(
Fn−1

Fn

)
.

By induction one proves that:(
Fn−1

Fn

)
= An−2

(
1
1

)
, where A =

(
0 1
1 1

)
.
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We compute the characteristic polynomial:

χA(x) = x2 − x− 1,

with roots (eigenvalues):

λ1 =
1 +

√
5

2
, λ2 =

1−
√
5

2
.

The eigenspaces of A are:

VA(λ1) =

〈(
1
λ1

)〉
, VA(λ2) =

〈(
1
λ2

)〉
.

Set:
P =

(
1 1
λ1 λ2

)
, ∆ = diag(λ1, λ2).

Then:
A = P∆P−1 ⇒ Am = P∆mP−1, for everym ∈ N.

Therefore, for every n ≥ 3:(
Fn−1

Fn

)
= An−2

(
1
1

)
=

1√
5

(
λn1 − λn2

λn+1
1 − λn+1

2

)
.

Hence:

Fn =
1√
5

[(
1 +

√
5

2

)n

−

(
1−

√
5

2

)n]
.

Application 4.4.3 (Matrix Roots). Let

A =

2 −1 −1
0 −1 0
0 2 1

 .

Find a matrix B ∈ F3×3 such that B3 = A.

Proof. From Application 4.4.1 we have

A = P

−1 0 0
0 1 0
0 0 2

P−1,
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where

P =

 0 1 1
−1 0 0
1 1 0

 .

Then, setting
B = Pdiag

(
−1, 1,

3
√
2
)
P−1

we obtain B3 = A, as required.
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4.5 Exercises of Chapter 4.

Group A: 1, 3, 4, 5, 8, 9, 10, 14, 15, 16, 17, 18, 25, 32, 36
Group B: 2, 6, 7, 12, 13, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35

Exercise 4.1. Examine which of the following matrices are diagonalizable. If some Ai ∈ Fn×n is
diagonalizable, find a basis of Fn×1 consisting of eigenvectors ofAi, an invertible Pi ∈ Fn×n such
that P−1

i AiPi is diagonal, and the matrix P−1
i AiPi.

a. A1 =

(
1 −1
2 −1

)
∈ R2×2 ,

b. A2 =

(
1 −1
2 −1

)
∈ C2×2 ,

c. A3 =

(
1 1
−1 −1

)
∈ R2×2 ,

d. A4 =

1 1 1
1 1 1
1 1 1

 ∈ R3×3 .

Exercise 4.2. Let A ∈ Fn×n be a diagonalizable matrix.

a. Show that for every positive integer k the matrix Ak is diagonalizable, and more generally
that for every ϕ(x) ∈ F[x] the matrix ϕ(A) is diagonalizable.

b. Show that if Ak = 0 for some positive integer k, then A = 0.

c. Show that if A is invertible, then ϕ(A−1) is diagonalizable for every ϕ(x) ∈ F[x].

d. If χA(x) = (x− 3)10, find A.

e. Let X ∈ Fn×1 with AkX = 0 for some positive integer k. Show that AX = 0.

f. Suppose thatA is invertible andF = R. Is it possible thatA+A−1 is similar to diag(1, 3, 3, · · · , 3)?

Exercise 4.3. Let

A =

3 2 4
2 0 2
4 2 3

 ∈ F3×3.
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a. Find the eigenvalues of A, a basis for each eigenspace of A, and the dimension of the vector
space generated by the eigenvectors of A.

b. Determine whether A is diagonalizable, and if it is diagonalizable, find an invertible matrix
P such that P−1AP is diagonal.

Exercise 4.4. Let A =

(
4 a
3 3

)
∈ R2×2.

a. Prove that the matrix A is diagonalizable if and only if a > −1/12.

b. Let a = 2. Find invertible matrices P,Q ∈ R2×2 such that P−1AP andQ−1AQ are distinct
diagonal matrices.

Exercise 4.5. a. LetA ∈ Rn×n be a diagonalizable matrix whose eigenvalues are nonnegative.
Show that there exists B ∈ Rn×n such that B2 = A.

b. Show that
(
0 1
0 0

)
∈ R2×2 is not diagonalizable and that there is no B ∈ R2×2 such that

B2 =

(
0 1
0 0

)
.

Exercise 4.6. LetA,P,∆ ∈ Fn×n such thatAP = P∆ and∆ is diagonal,∆ = diag(λ1, · · · , λn).

a. Show that for each k = 1, · · · , n we have AP (k) = λkP
(k), where P (k) is the k-th column

of P .

b. Let λ1, λ2, λ3 ∈ F. Find a matrix A ∈ F3×3 with eigenvalues λ1, λ2, λ3 and corresponding
eigenvectors 1

1
1

 ,

1
1
0

 ,

1
0
0

 .

Is A unique?

Exercise 4.7. Let A =


∗ 0 ∗ 0
∗ 3 ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ 4

 ∈ C4×4 with detA = TrA = 0. Show that A is diagonal-

izable.
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Exercise 4.8. Let A ∈ Fn×n be an upper triangular matrix of the form

A =

λ ∗
. . .

0 λ

 ,

that is, A is upper triangular and every diagonal entry equals λ. Show that A is diagonalizable if
and only if it is diagonal.

Exercise 4.9. Determine whether

A =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
0 0 · · · 1 −an−1

 ∈ Cn×n

is diagonalizable.

Exercise 4.10. Find the values of a, b, c ∈ R such that

A =

3 0 0
a 3 0
b c −2

 ∈ R3×3

is diagonalizable.

Exercise 4.11. Find the values of a ∈ R such that the dimension of the vector space generated by
the eigenvectors of

A =

0 1 0
a 0 a
0 1 0

 ∈ R3×3

is equal to 3.

Exercise 4.12. Let A,B ∈ Fn×n such that AB = BA. Prove that if A has n distinct eigenvalues,
then B is diagonalizable.

Exercise 4.13. Let A,B ∈ Fn×n be two diagonalizable matrices. Show that A,B are similar if
and only if χA(x) = χB(x).
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Exercise 4.14. Find all a ∈ F such that the linear map f : F3 → F3 is diagonalizable in the
following cases:

a. f(x, y, z) = (x+ az, 2y, ay + 2z),

b. f(x, y, z) = (ax+ y + z, x+ ay + z, x+ y + az) .

Exercise 4.15. Determine which of the following linear maps are diagonalizable:

a. f : F3 → F3, f(x, y, z) = (x+ y, y − z, 2y + 4z) ,

b. g : F3 → F3, g(x, y, z) = (2x+ y, y − z, 2y + 4z) ,

c. h : F2[x] → F2[x], h(ϕ(x)) = ϕ(1)x.

Exercise 4.16. Let f : V → V be a diagonalizable linear map such that λ ∈ {−1, 1} for every
eigenvalue λ of f . Show that f2 = 1V .

Exercise 4.17. Let f : V → V be an isomorphism. Prove the following.

a. If λ ∈ F is an eigenvalue of f , then λ 6= 0.

b. λ ∈ F is an eigenvalue of f ⇔ λ−1 is an eigenvalue of f−1.

c. For every λ ∈ F− {0}, Vf (λ) = Vf−1(λ−1).

d. f is diagonalizable⇔ f−1 is diagonalizable.

Exercise 4.18. Let f : R3 → R3 be a linear map such that there exists an ordered basis â =
(v1, v2, v3) of R3 with

(f : â, â) =

 0 0 λ1
0 λ2 0
λ3 0 0

 .

a. Show that f2 is diagonalizable.

b. Is it true that f is diagonalizable?

c. Suppose that λ1, λ3 > 0. Show that
√
λ1v1 +

√
λ3v3 is an eigenvector of f .
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Exercise 4.19. Let f : V → V be a diagonalizable linear map. Show that ker f = ker fm and
Imf = Imfm for some positive integerm.

Exercise 4.20. For every positive integer k compute Ak, where

A =

1 −3 3
0 −5 6
0 −3 4

 .

Exercise 4.21. Let

A =

2 −1 −1
0 −1 0
0 2 1

 .

a. Compute the power Ak, k ≥ 1.

b. Find a matrix B ∈ R3×3 such that B3 = A.

c. How many matrices B ∈ C3×3 can you find such that B3 = A?

Exercise 4.22. Consider the sequence (an), n = 1, 2, · · · , defined by the terms a1 = 1, a2 = 4
and the recurrence relation an = 2an−1 + 3an−2, n = 3, 4, · · · . Find the general term an in terms
of a1, a2 and n.

Exercise 4.23. a. Let A ∈ Rn×n be diagonalizable such that |λ| ≥ 2 for every eigenvalue of
A. Show that there exists an invertible B ∈ Rn×n such that B +B−1 = A.

b. Show that there is no invertible B ∈ R3×3 such that B +B−1 = I3.

Exercise 4.24. Assume that n ≥ 2.

a. Show that Rn×n = U ⊕ V , where U = {A ∈ Rn×n : A = At}, V = {A ∈ Rn×n : A =

−At}. Also show that dimU =
n(n+ 1)

2
, dimV =

n(n− 1)

2
.

b. Using the above, prove that the linear map

f : Rn×n → Rn×n, A 7→ At ,

is diagonalizable and find its characteristic polynomial.
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Exercise 4.25. Let f, g : V → V be two linear maps such that f is diagonalizable and every
eigenvector of f is an eigenvector of g. Show that f ◦ g = g ◦ f .

Exercise 4.26. Let a1, · · · , an, b1, · · · , bn ∈ F such that the matrix

A =

a1b1 · · · a1bn
...

...
anb1 · · · anbn

 ∈ Fn×n

is nonzero.

a. Show that rankA = 1.

b. Show that A is diagonalizable if and only if TrA 6= 0.

Exercise 4.27. Show that the matrix

A =


a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

...
b b b · · · a

 ∈ Fn×n.

is diagonalizable.

Exercise 4.28. Let a ∈ F and let β̂ = (v1, v2, v3) be an ordered basis of F3. Consider the linear
map f : F3 → F3 defined by

f(v1) = v1, f(v2) = 2v1 − av2 − v3, f(v3) = a2v2 + av3.

a. Show that f is not diagonalizable.

b. Show that fn is diagonalizable for every n ≥ 2.

Exercise 4.29. Let n ≥ 2. Let a1, · · · , an, b1, · · · , bn ∈ F such that not all of them are equal to 0

and
n−1∑
i=1

aibi = 0. Compute the characteristic polynomial of the matrix
0 0 · · · 0 a1
0 0 · · · 0 a2
...

...
...

...
0 0 · · · 0 an−1

b1 b2 · · · bn−1 0

 ∈ Fn×n

and show that it is not diagonalizable.
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Exercise 4.30. Determine which of the following statements are true or false. Justify your answer.

a. There exists a diagonalizable linear map f : F4 → F4 such that χf (x) = x2(x − 3)2 and
dim Imf = 3.

b. For every a, b ∈ R, the matrices
(
4 a
0 5

)
,

(
5 0
b 4

)
∈ R2×2 are similar.

c. Let f : V → V be a linear map. If λ 6= µ are two eigenvalues of f , then the linear map

g : V (λ)⊕ V (µ) → V (λ)⊕ V (µ), g(u+ v) = f(u+ v) ,

is diagonalizable.

Exercise 4.31. Let A ∈ Fn×n with rankA = r. Prove that the characteristic polynomial of A has
the form

(−1)nxn + an−1x
n−1 + · · ·+ an−rx

n−r.

Exercise 4.32. Let A ∈ C2×2 and let λ, µ be the eigenvalues of A. Show that if λ 6= µ, then for
every positive integer k,

Ak =
λk

λ− µ
(A− µI2) +

µk

µ− λ
(A− λI2).

Exercise 4.33. Let A ∈ Fn×n with rankA = 1 and n ≥ 2. Prove the following statements.

a. A is similar to a matrix of the form
0 · · · 0 a1
0 · · · 0 a2
...

...
...

0 · · · 0 an

 .

b. TrA 6= 0 ⇔ A is diagonalizable.

Exercise 4.34. Consider the linear map f : R2[x] → R2[x] defined by f(x2 + 1) = x+ 1, f(x+
1) = x+ 1 f(1) = x+ 1. Set g = f1821 + 2 · 1V , V = R2[x].

a. Find a basis for each eigenspace of f and each eigenspace of g.
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b. Determine whether f, g are diagonalizable.

c. Determine whether f, g are isomorphisms.

Exercise 4.35. Let A =

(
1 2
0 3

)
and let f : R2×2 → R2×2, f(X) = AX − XA. Determine

whether f is diagonalizable.

Exercise 4.36. If λ1, λ2, λ3, λ4 are the eigenvalues of an invertibleA ∈ C4×4, then the eigenvalues
of adjA are λ1λ2λ3, λ1λ2λ4, λ1λ3λ4, λ2λ3λ4.

Exercise 4.37. Determine which of the following statements are true. In each case, give a proof or
a counterexample.

a. Every matrix that is similar to a diagonalizable matrix is diagonalizable.

b. If A ∈ R4×4 with χA(x) = x(x+ 1)(x2 + 1), then A is diagonalizable.

c. If A ∈ R4×4 with χA(x) = x(x+ 1)(x2 + 1), then A is diagonalizable.

d. Let A ∈ R4×4 with χA(x) = x2(x − 1)(x − 2). Then A is diagonalizable if and only if
dimVA(0) > 1.

e. If A,B ∈ Fn×n are diagonalizable, then A+B is diagonalizable.

f. If A,B ∈ Fn×n are diagonalizable, then AB is diagonalizable.

g. Every invertible matrix is diagonalizable.

h. The dimension of the subspace generated by the eigenvectors of A =


∗ 0 ∗ 0
∗ 3 ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ 4

 is at

least 2.
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CHAPTER 5

TRIANGULARIZABLE MATRICES

5.1 Triangularizable Matrices

Definition 5.1.1. AmatrixA ∈ Fn×n is called triangularizable if there exists an invertible matrix
P ∈ Fn×n such that P−1AP = T is upper triangular.

Example 5.1.1. The matrix
(
1 1
0 1

)
, which is not diagonalizable (show why), is clearly triangu-

larizable, since it is upper triangular.

Observation 5.1.1. i. IfA ∈ Fn×n is triangularizable, then χA(x) is a product of linear factors
in F[x].

ii. If A is diagonalizable, then it is also triangularizable.

Proof. i. A is triangularizable, i.e., there exists an invertible P ∈ Fn×n satisfying

P−1AP =

λ1 ∗ ∗
. . . ...

0 λn

 ,

hence we conclude that

χA(x) = χP−1AP (x) = (λ1 − x) · · · (λn − x).

83
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ii. This follows immediately from the definition. Attention! The converse is not true.

Reminder 5.1.1. Let A,B, P ∈ Fn×n be matrices such that P−1AP = B. The following are
equivalent:

i. P (i) is an eigenvector of A with eigenvalue λ.

ii. B(i) = λEi, where {E1, · · · , En} is the standard basis of Fn×1.

Theorem 5.1.1. A matrix A ∈ Fn×n is triangularizable if and only if χA(x) is a product of linear
factors.

Proof. If A is triangularizable, then χA(x) is a product of linear factors by Notation 5.1.1.

Conversely, assume that

χA(x) = (λ1 − x) · · · (λn − x).

We use induction on n.

• Base case. For n = 1, the claim is immediate.

• Inductive step. Assume the claim holds for matricesB ∈ F(n−1)×(n−1) whose characteristic
polynomial is a product of linear factors.
Let u1 ∈ Fn×1 be an eigenvector corresponding to the eigenvalue λ1. Then there exists a
basis of Fn×1 of the form

u = {u1, . . . , un}.

Define the matrix P1 whose columns are the vectors ui, i.e.,

P
(i)
1 = ui.

Then P1 is invertible.
By Reminder 5.1.1, we obtain:

P−1
1 AP1 =

(
λ1 ∗
0 B1

)
, B1 ∈ F(n−1)×(n−1).

Moreover,
χA(x) = (λ1 − x) · χB1(x),
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so χB1(x) is also a product of linear factors. Hence, by the inductive hypothesis, there exists
an invertible matrix P2 such that

P−1
2 B1P2 = T,

with T upper triangular.

Set
P = P1 ·

(
1 0

0 P2

)
,

which is invertible. Then:

P−1AP =

(
1 0

0 P2

)−1

· P−1
1 AP1 ·

(
1 0

0 P2

)
=

(
1 0

0 P2

)−1

·
(
λ1 ∗
0 B1

)
·
(
1 0

0 P2

)
=

(
λ1 ∗
0 T

)
,

which is upper triangular.

Example 5.1.2. Consider the matrix

A =

(
−2 1
−4 2

)
.

Then χA(x) = x2, i.e. A is triangularizable. By straightforward computations we find

VA(0) =

〈(
1
2

)〉
.

Take any invertible P with

P (1) =

(
1
2

)
∈ VA(0),

for example

P =

(
1 1
2 0

)
.

Then we obtain
P−1AP =

(
0 ∗
0 0

)
.
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Example 5.1.3. Consider the matrix

B =

3 4 5
0 −2 1
0 −4 2

 .

Using the previous example, where

P−1AP =

(
0 ∗
0 0

)
, A =

(
−2 1
−4 2

)
, P =

(
1 1
2 0

)
and the idea of the proof of Theorem 5.1.1, we set

Q =

1 0 0
0 1 1
0 2 0

 .

The matrix Q is invertible, and in fact we know that

Q−1BQ =

3 ∗ ∗
0 0 ∗
0 0 0

 .

Example 5.1.4. Consider the matrix

A =

 2 2 0
−1 5 1
1 −1 5

 .

By straightforward computations we find:

χA(x) = −(x− 4)3

and

VA(4) =

〈1
1
0

〉 .
Consider a basis of R3×1 that contains 1

1
0

 ,

for example 
1
1
0

 ,

0
1
0

 ,

0
0
1

 .
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Set

P =

1 0 0
1 1 0
0 0 1

 ,

which is invertible, and

P−1AP =

(
4 ∗
0 B1

)
,

where
B1 =

(
3 1
−1 5

)
.

Continue similarly with B1, where χB1(x) = (x− 4)2 and

VB1(4) =

〈(
1
1

)〉
,

by setting

P2 =

(
1 0
1 1

)
.

Then P2 is invertible and

P−1
2 B1P2 =

(
4 ∗
0 4

)
.

Finally, if

P = P1

1 0 0
0 1 0
0 1 1

 =

1 0 0
1 1 0
0 1 1

 ,

then P is invertible and moreover

P−1AP =

4 ∗ ∗
0 4 ∗
0 0 4

 .

Example 5.1.5. Consider the matrix

A =

 0 0 −3
−1 3 1
1 0 4


with χA(x) = (1− x)(3− x)2.

Method A
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We compute that

VA(1) =

〈 3
2
−1

〉 , VA(3) =

〈0
1
0

〉 .
Thus we consider the matrix

P =

 3 0 0
2 1 0
−1 0 1



which is obtained by extending the set


 3

2
−1

 ,

0
1
0

 to a basis of R3×1. Then we know that

P−1AP =

1 ∗ ∗
0 3 ∗
0 0 3

 .

Method B

Observe thatA(2) = 3E2. Hence E2 is an eigenvector ofA with eigenvalue 3. Then we follow
the idea of the proof as before. In summary, set

P1 =

0 1 0
1 0 0
0 0 1

 .

Then

P−1
1 AP1 =

3 ∗ ∗
0 0 −3
0 1 4

 .

Setting

B1 =

(
0 −3
1 4

)
,

we have χB1(x) = (x− 1)(x− 3), hence B1 is diagonalizable. Moreover,

VB1(1) =

〈(
3
−1

)〉
, VB1(3) =

〈(
1
−1

)〉
.
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For
P2 =

(
3 1
−1 −1

)
we have

P−1
2 B1P2 =

(
1 0
0 3

)
.

Finally, setting

P = P1

1 0 0
0 3 1
0 −1 −1

 ,

we obtain

P−1AP =

3 ∗ ∗
0 1 0
0 0 3

 .

5.2 Triangularizable Linear Maps

Definition 5.2.1. A linear map f : V → V is called triangularizable if there exists an ordered
basis v̂ of V such that the matrix (f : v̂, v̂) is upper triangular.

Observation 5.2.1. Let f : V → V , let â be an ordered basis of V , and let A = (f : â, â). The
following are equivalent:

i. f is triangularizable.

ii. A is triangularizable.

iii. χf (x) is a product of linear factors.

Proof. • i. ↔ ii. This follows immediately from Theorem 1.2

• ii. ↔ iii. This follows from Theorem 5.1.1 and the fact that χf (x) = χA(x).

Example 5.2.1. Let

f : R3 → R3, f(x, y, z) = (2x, x+ y + 2z, ay + z).

Show that f is triangularizable if and only if a ≥ 0.
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Proof. We observe that

A = (f : ê, ê) =

2 0 0
1 1 2
0 a 1

 ,

hence:

χf (x) = χA(x) = det

2− x 0 0
1 1− x 2
0 a 1− x

 .

Therefore:

χf (x) = (2− x) ·
[
(1− x)2 − 2a

]
= (2− x)(x2 − 2x+ 1− 2a).

The map f is triangularizable if and only if χf (x) factors into linear factors over R, i.e. if the
discriminant of the quadratic factor is nonnegative:

∆ = 4− 4(1− 2a) = 8a ≥ 0 ⇔ a ≥ 0.

Reminder 5.2.1. Let T be upper triangular, i.e. of the form

T =

t1 ∗
. . .

0 tn

 .

By induction one has

T k =

t
k
1 ∗

. . .
0 tkn

 , for every k ≥ 1.

More generally, for every φ(x) ∈ F[x],

φ(T ) =

φ(t1) ∗
. . .

0 φ(tn)

 ,

i.e. it is also upper triangular.

Theorem 5.2.1 (Spectral Mapping). Let A ∈ Fn×n with

χA(x) = (λ1 − x) · · · (λn − x).

Then for every φ(x) ∈ F[x] we have:

χφ(A)(x) = (φ(λ1)− x) · · · (φ(λn)− x) .
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Proof. Let φ(x) ∈ F[x]. Since χA(x) = (λ1 − x) · · · (λn − x), the matrix A is triangularizable,
i.e. there exists P ∈ Fn×n such that

P−1AP = T =

t1 ∗
. . .

0 tn

 .

Also, φ(T ) = P−1φ(A)P . From this relation and Reminder 5.2.1 we get:

χφ(T )(x) = χφ(A)(x) = (φ(t1)− x) · · · (φ(tn)− x),

where each ti is an eigenvalue of A, for i = 1, 2, . . . , n.

5.3 Cayley-Hamilton Theorem

Motivation. LetA ∈ Fn×n. We know that dimFn×n = n2 and the number ofmatrices In, A,A2, . . . , An2

is n2 + 1. Hence they are linearly dependent, i.e. there exist a0, a1, . . . , an2 ∈ F, not all zero, such
that

an2An2
+ · · ·+ a0In = 0.

Setting φ(x) = an2xn
2
+ · · ·+ a0, we obtain a nonzero polynomial with φ(A) = 0.

Observation 5.3.1. Let
A =

(
A1 ∗
0 A2

)
∈ Fn×n

with Ai ∈ Fni×ni and n1 + n2 = n. Then, by induction,

Am =

(
Am

1 ∗
0 Am

2

)
, for everym ≥ 1.

Consequently, for every φ(x) ∈ F[x],

φ(A) =

(
φ(A1) ∗

0 φ(A2)

)
.

Theorem 5.3.1 (Cayley-Hamilton for matrices). Let A ∈ Fn×n with

χA(x) = (−1)nxn + an−1x
n−1 + · · ·+ a0.

Then:
χA(A) = (−1)nAn + an−1A

n−1 + · · ·+ a0In = 0.
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Proof. The proof is split into two steps:

Step A. If A ∈ Cn×n, then it is similar to an upper triangular matrix T . That is, there exists an
invertible P such that:

A = P−1TP.

Hence:
χA(A) = χT (A) = χT (P

−1TP ) = P−1χT (T )P.

It suffices to show that
χT (T ) = 0,

i.e. to prove the claim in the special case where the matrix is upper triangular.

Step B.We use induction on n.

• Base case. For n = 1 the theorem is obvious.

• Inductive step. Assume it holds for every upper triangular matrix of size (n− 1)× (n− 1).

Let
T =

(
λ1 ∗
0 T1

)
where T1 is upper triangular of size (n− 1)× (n− 1) and

χT (x) = (λ1 − x) · χT1(x).

Thus:
χT (T ) = (λ1In − T ) · χT1(T ).

We have:
χT (T ) =

(
0 ∗
0 λ1In−1 − T1

)(
χT1(λ1) ∗

0 χT1(T1)

)
.

By the inductive hypothesis, χT1(T1) = 0, hence:

χT (T ) =

(
0 ∗
0 λ1In−1 − T1

)(
∗ ∗
0 0

)
= 0.

Observation 5.3.2. If φ ∈ F[x], A ∈ Fn×n with φ(A) = 0 and λ is an eigenvalue of A, then φ(λ)
is a root of the polynomial φ(x). Consequently, if Ak = 0, then every eigenvalue λ of A (in C) is
0.
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Proposition 5.3.1. Let A ∈ Fn×n. The following statements are equivalent:

i. An = 0,

ii. Ak = 0 for some k ≥ 1,

iii. Every eigenvalue of A in C is 0.

Proof. • i. ⇒ ii. Obvious, since An = 0.

• ii. ⇒ iii. By Notation 5.3.2, every eigenvalue of A is a root of the annihilating polynomial,
hence it must be 0.

• iii. ⇒ i. If all eigenvalues of A are 0, then χA(x) = (−1)nxn. By Theorem 5.3.1 we get

χA(A) = (−1)nAn = 0,

thus An = 0.

Theorem 5.3.2 (Cayley-Hamilton for linear maps). Let f : V → V be a linear map and letχf (x) =
(−1)nxn + · · ·+ a0 be its characteristic polynomial. Then:

χf (f) = (−1)nfn + · · ·+ a0 · 1V = 0.

Proof. Let v̂ be an ordered basis of V and A = (f : v̂, v̂). We know that for every φ(x) ∈ F[x]:

(φ(f) : v̂, v̂) = φ(A).

For φ(x) = χf (x) = χA(x), by Theorem 5.3.1 we have χA(A) = 0, hence:

(χf (f) : v̂, v̂) = 0 ⇒ χf (f) = 0.
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5.4 Exercises of Chapter 5.

Group A: 1,2,3,4,5,6,7,11,14,23,28,34
Group B: 8,9,12,13,15,16,17,18,19,20,21,22,24,25,31,33,35
Group C: 10,26,27,29,30

Exercise 5.1. Prove that if A ∈ R2×2 has at least one real eigenvalue, then A is triangularizable.

Exercise 5.2. a. Let A =

(
−2 1
−4 2

)
∈ C2×2. After showing that A is triangularizable, find an

invertible U ∈ C2×2 such that U−1AU is triangular.

b. Let A =

3 4 5
0 −2 1
0 −4 2

 ∈ R3×3. After showing that A is triangularizable, find an invertible

U ∈ R3×3 such that U−1AU is triangular.

c. Let A =

 2 2 0
−1 −2 1
0 5 1

 ∈ R3×3. After showing that A is triangularizable, find an invert-

ible U ∈ R3×3 such that U−1AU is triangular.

Exercise 5.3. Find the values of a for which the matrix(
4 a
3 3

)
∈ R2×2

is triangularizable but not diagonalizable.

Exercise 5.4. Let

A =

 1 1 −1
−1 3 −1
−1 2 0

 ∈ R3×3.

a. Find the characteristic polynomial and the dimensions of the eigenspaces of A.

b. Is A diagonalizable?

c. Is A triangularizable? If yes, find an invertible U such that U−1AU is triangular.
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Exercise 5.5. Let {v1, v2, v3} be a basis of R3, let a ∈ R, and let f : R3 → R3 be the linear map
such that f(v1) = 2v1, f(v2) = v1 + v2 +2v3, f(v3) = av2 + v3. Show that f is triangularizable
if and only if a ≥ 0.

Exercise 5.6. Show that there exist infinitelymanymatricesA ∈ R2×2 such thatA2−5A+6I2 = 0.

Exercise 5.7. Let A ∈ R3×3 with χA(x) = −x3 + x. Show that for every positive integer k:

a. Ak is diagonalizable, and

b. A2k = A2 and A2k+1 = A.

Exercise 5.8. a. LetA ∈ Cn×n with eigenvalues λ1, · · · , λn. Then for every k ≥ 1, Tr(Ak) =
λk1 + · · ·+ λkn.

b. Let A ∈ Rn×n be a triangularizable matrix such that Tr(A2) = 0. Show that An = 0.

c. LetA ∈ Cn×n such that Tr(A) = Tr(A2) = · · · = Tr(An−1) = 0. Show that if Tr(An) 6= 0,
then A is

• diagonalizable and
• invertible.

Exercise 5.9. Let A ∈ Fn×n. Show that the following are equivalent:

a. Every eigenvalue of A in C equals 0.

b. Ak = 0 for some positive integer k.

c. An = 0.

d. Tr(A) = Tr(A2) = · · · = Tr(An) = 0.

Exercise 5.10. Let A,B ∈ Fn×n such that AB −BA = A. Prove that An = 0.

Exercise 5.11. Let A ∈ Cn×n be invertible. Show that if χA = (λ1 − x) · · · (λn − x), λi ∈ C,
then

χA−1(x) =

(
1

λ1
− x

)
· · ·
(

1

λn
− x

)
.
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Exercise 5.12. Let dimV = n and let f : V → V be a linear map.

a. Show that f is triangularizable if and only if for each i = 1, · · · , n there exists a subspace
Wi ≤ V with dimWi = i,W1 ⊆W2 ⊆ · · · ⊆Wn, and f(Wi) ⊆Wi.

b. Is it true that f is triangularizable if for each i = 1, · · · , n there exists a subspaceWi ≤ V
with dimWi = i and f(Wi) ⊆Wi?

Exercise 5.13. Let A ∈ Fn×n.

a. Show that if A is not invertible, then there exists f(x) ∈ F[x] of degree n − 1 such that
Af(A) = 0.

b. Show that if A is invertible, then there exists f(x) ∈ F[x] of degree n− 1 such that A−1 =
f(A).

Exercise 5.14. Let

A =

2 −1 −1
0 −2 −1
0 3 2

 ∈ R3×3.

a. Express A−1 as a linear combination of I3, A,A2.

b. Prove that A2n − 2A2n−1 = A2 − 2A for every positive integer n.

c. Find a polynomial φ(x) ∈ R[x] of degree at most 2 such that A5− 2A4+2a+3I3 = ϕ(A).

Exercise 5.15. LetA ∈ Rn×n such that χA(x) = (−1)n(xn−xm−xn−m+1), where 0 < m < n.
Show that there exists a positive integer ν such that An is triangularizable.

Exercise 5.16. Let A ∈ Cn×n be a non-diagonalizable matrix. Then A is similar to a matrix of the

form
(
λ 1
0 λ

)
.

Exercise 5.17. Let A,B ∈ Fn×n satisfy AB = BA = 0. Show that χA(A + B) = χA(B) −
det (A) · In.
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Exercise 5.18. If A = (aij) ∈ Fn×n, define h(A) =
∑
i,j
aijaji.

a. Show that if A,B are similar, then h(A) = h(B).

b. Let F = C. Show that h(A) = λ21 + · · ·+ λ2n, where λ1, · · · , λn ∈ C are the eigenvalues of
A.

Exercise 5.19. Show that every upper triangular matrix A ∈ Fn×n is similar to a lower triangular
matrix. Then show that every matrix B ∈ Cn×n is similar to a lower triangular matrix.

Exercise 5.20. Let A ∈ Rn×n such that An = In. Show that −n ≤ TrA ≤ n.

Exercise 5.21. Let V be a C-vector space and let f, g : V → V be two linear maps such that
f ◦ g = g ◦ f . Prove the following.

a. If λ is an eigenvalue of f , then g(Vf (λ)) ⊆ Vf (λ).

b. The maps f, g have a common eigenvector.

c. There exists an ordered basis of V such that the corresponding matrices of f, g are upper
triangular.

d. For every eigenvalue λ of f − g there exist an eigenvalue λf of f and an eigenvalue λg of g
such that λ = λf − λg.

Exercise 5.22. Let A,B ∈ Cn×n. Consider the linear maps

LA : Cn×n → Cn×n, LA(X) = AX,

RB : Cn×n → Cn×n, RB(X) = XB.

a. Show that LA ◦RB = RB ◦ LA.

b. Show thatLA has the same eigenvalues as the matrixA and thatRB has the same eigenvalues
as the matrix B.

c. Assume that A,B have no common eigenvalue. Show that for every C ∈ Cn×n there exists
a unique D ∈ Cn×n such that AD −DB = C.



Konstantinos Bizanos Linear Algebra II

Exercise 5.23. Let A ∈ Fn×n and let WA be the subspace of Fn×n generated by In, A,A2, · · · .
Show that for every k ≥ 0, An+k ∈ 〈In, A,A2, · · · , An−1〉 and hence dimWA ≤ n.

Exercise 5.24. Determine which of the following statements are true. Justify your answers.

a. Let A ∈ R4×4 with χA(x) = (x2 + 1)(x + 1)2. Then the matrix An is triangularizable if
and only if n is even.

b. For every A ∈ Fn×n there exists a polynomial φ(x) ∈ F[x] of positive degree such that
φ(A) = In.

Exercise 5.25. Let A ∈ Fn×n with rankA = 1. Prove the following statements.

a. A2 = Tr(A) ·A.

b. An = 0 ⇔ Tr(A) = 0.

c. A is triangularizable.

d. Tr(A) 6= 0 ⇔ A is diagonalizable. (see Exercise 3.26).

Exercise 5.26. Let A,B,C,D ∈ Fn×n such that AiC = BiD for every i ≥ 1. Prove that if A,B
are invertible, then C = D.

Exercise 5.27. Let A ∈ Cn×n and let fA : Cn×n → Cn×n be the linear map defined by fA(B) =
AB −BA. Show that if every eigenvalue of A equals 0, then every eigenvalue of fA equals 0.

Exercise 5.28. Let V be a real vector space of dimension 3, let â = {v1, v2, v3} be an ordered
basis of V , and let c ∈ R. Consider the linear map f : V → V defined by f(v1) = 2v2, f(v2) =
−v1 + 3v2, f(v3) = cv1 + v2 + v3.

a. Find all values of c for which f is triangularizable.

b. Find all values of c for which f is diagonalizable.

c. For c = 0 find a basis for each eigenspace of f and a basis of V generated by eigenvectors
of f .
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Exercise 5.29. If A ∈ Rn×n is triangularizable and Tr(A2) = Tr(A3) = Tr(A4) = c, then
c ∈ Z≥0 and Tr(Ak) = c for every positive integer k.

Exercise 5.30. LetA ∈ Cn×n andB ∈ Cm×m have no common eigenvalue. Show that there is no
nonzero X ∈ Fn×m with AX = XB.

Exercise 5.31. Let A =

0 1 1
0 0 1
0 0 0

 ∈ C3×3. Show that for every m ≥ 3 there is no B ∈ C3×3

with Bm = A.

Exercise 5.32. Let A,B ∈ Cn×n with (AB)n = 0, n ≥ 1. Then (BA)n = 0.

Exercise 5.33. If A ∈ Cn×n has at most one nonzero eigenvalue, then det (In +A) = 1+Tr(A).

Exercise 5.34. Let A,B ∈ Cn×n. Show that the matrix χB(A) is invertible if and only if A,B
have no common eigenvalue.

Exercise 5.35. Determine which of the following statements are true. In each case give a proof or
a counterexample.

a. LetA be an invertible matrix. ThenA is triangularizable if and only ifA−1 is triangularizable.

b. If A ∈ Fn×n is triangularizable, then φ(A) is triangularizable for every φ(x) ∈ F[x].

c. Let A ∈ Rn×n. If A2 is triangularizable, then A is triangularizable.

d. If A ∈ R3×3, then there exists an invertible U ∈ R3×3 with U−1AU upper triangular.

e. If A ∈ R3×3, then there exists an invertible U ∈ R3×3 with

U−1AU =

λ ∗ ∗
0 ∗ ∗
0 ∗ ∗

 .

f. If A ∈ R3×3 is of the form

A =

∗ 0 ∗
∗ −5 ∗
∗ 0 ∗


then there exists an invertible U ∈ R3×3 with

U−1AU =

−5 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 .
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g. Let A ∈ R4×4 with χA(x) = (x − 1)2(x − 2)(x − 3). Then A is triangularizable and not
diagonalizable if and only if dimV (1) = 1.

h. Let f : V → V be a triangularizable linear map and let U ≤ V be a subspace such that
f(U) ⊆ U . Then the restriction of f to U is a triangularizable map.



CHAPTER 6

MINIMAL POLYNOMIAL

6.1 Minimal Polynomial

Motivation. If A ∈ Fn×n, then there exists a polynomial φ(x) ∈ F[x], with φ(x) 6= 0, such that
φ(A) = 0. For example, by the Cayley–Hamilton Theorem we have χA(A) = 0. Our goal is to
find the monic polynomial of smallest degree that annihilates A.

Definition 6.1.1. Let A ∈ Fn×n. The minimal polynomial of A, denoted bymA(x), satisfies:

i. mA(x) is monic,

ii. mA(A) = 0,

iii. mA(x) has minimal degree among polynomials satisfying (i) and (ii).

Observation 6.1.1. For every A ∈ Fn×n there exists a polynomial satisfying the properties of
Definition 6.1.1, and moreover it is unique.

Proof. • Existence. Consider the set

S = {φ(x) ∈ F[x] |φ(x) 6= 0 and φ(A) = 0} .

The set S is nonempty, since by Theorem 5.3.1 we have χA(A) = 0. Choose a polynomial
φ(x) ∈ S of minimal degree. If r is the leading coefficient of φ(x), then r−1 φ(x) also lies
in S, is monic, and has minimal degree.

101
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• Uniqueness. Let mA(x) and m′
A(x) be two monic polynomials that annihilate A and have

minimal degree. IfmA(x) 6= m′
A(x), then the difference

mA(x)−m′
A(x)

is a nonzero polynomial of degree strictly smaller than deg(mA) and it also annihilates A.
Then

r−1(mA −m′
A)

(where r is the leading coefficient) is monic, annihilates A, and has smaller degree—a con-
tradiction. Hence

mA(x) = m′
A(x).

Properties 6.1.1. Let A ∈ Fn×n.

i. If φ(A) = 0 for some φ(x) ∈ F[x], thenmA(x) | φ(x). In particular,mA(x) | χA(x).

ii. Every eigenvalue of A is a root ofmA(x). Every root ofmA(x) is an eigenvalue of A. That
is,mA(x) and χA(x) have the same roots (ignoring multiplicities).1

Proof. i. By Euclidean division, there exist polynomials q(x), r(x) ∈ F[x] such that

φ(x) = q(x)mA(x) + r(x), where either deg r(x) < degmA(x) or r(x) = 0.

Then
φ(A) = q(A)mA(A) + r(A) = r(A).

Since φ(A) = 0, we get r(A) = 0. If r(x) 6= 0, then c−1r(x), where c is the leading coeffi-
cient of r(x), is monic, nonzero, satisfies r(A) = 0, and has degree smaller than deg(mA)—a
contradiction. Hence r(x) = 0, i.e.mA(x) | φ(x).
In particular, for φ(x) = χA(x), by Theorem 5.3.1 we have χA(A) = 0, hence mA(x) |
χA(x).

ii. Let λ ∈ F and X 6= 0 such that AX = λX . We know that for every φ(x) ∈ F[x],

φ(A)X = φ(λ)X.

In particular, for φ(x) = mA(x) we obtain

mA(A)X = mA(λ)X = 0.

1For example, it could happen that χA(x) = −(x − 1)2(x − 2) and mA(x) = (x − 1)(x − 2). It cannot happen
thatmA(x) = (x− 1)2 ormA(x) = (x− 1)2(x− 2)(x− 3).
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Since X 6= 0, it follows that mA(λ) = 0. Thus every eigenvalue of A is a root of mA(x).
The converse follows immediately from (i), sincemA(x) | χA(x).

Example 6.1.1. Consider the matrices

A =

(
1 0
0 2

)
, B =

(
1 3
0 2

)
.

We observe that
χA(x) = (x− 1)(x− 2) = χB(x).

Then
mA(x) = (x− 1)(x− 2)

because
mA(x) | χA(x) = (x− 1)(x− 2)

and it has the same roots. Similarly,

mB(x) = (x− 1)(x− 2).

Example 6.1.2. Let the matrices be

A =

2 1 1
0 2 0
0 0 2

 , B =

2 1 0
0 2 1
0 0 2

 .

We observe that χA(x) = −(x− 2)3, hence

mA(x) ∈ {x− 2, (x− 2)2, (x− 2)3}.

We have:

A− 2I3 =

0 1 1
0 0 0
0 0 0

 6= 0, (A− 2I3)2 = 0 ⇒ mA(x) = (x− 2)2.

For the matrix B:

B − 2I3 =

0 1 0
0 0 1
0 0 0

 6= 0, (B − 2I3)2 =

0 0 1
0 0 0
0 0 0

 6= 0.

Therefore
mB(x) = (x− 2)3.
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Pay special attention to this example!

Example 6.1.3. Let

A =

3 −1 0
0 2 0
1 −1 2

 ∈ R3×3.

a. Find φ(x) ∈ R[x] with degφ(x) ≤ 1 such that A−1 = φ(A).

b. Find ψ(x) ∈ R[x] with degψ(x) ≤ 1 such that A4 +A− 2I3 = ψ(A).

Proof. First we findmA(x). We have χA(x) = −(x− 2)2(x− 3), hence:

mA(x) = (x− 2)2(x− 3) or mA(x) = (x− 2)(x− 3).

We compute:

(A− 2I3)(A− 3I3) = 0 ⇒ mA(x) = (x− 2)(x− 3) = x2 − 5x+ 6.

a. Since 0 is not an eigenvalue of A, it follows that A is invertible. From mA(A) = 0, i.e.
A2 − 5A+ 6I3 = 0, solving gives

A−1 = −1

6
(A− 5I3) ⇒ φ(x) = −1

6
(x− 5).

b. By Euclidean division of x4 + x− 2 bymA(x) = x2 − 5x+ 6, we have

x4 + x− 2 = (x2 + 5x+ 19)(x2 − 5x+ 6) + 66x− 166.

Hence
A4 +A− 2I3 = 66A− 166I3 ⇒ ψ(x) = 66x− 166,

sincemA(A) = 0.

Proposition 6.1.1. Similar matrices have the same minimal polynomial.

Proof. LetA,B ∈ Fn×n withB = P−1AP , whereP ∈ Fn×n is invertible. For everyφ(x) ∈ F[x]
we have

φ(B) = P−1φ(A)P.

Hence φ(A) = 0 if and only if φ(B) = 0. ThereforemA(x) = mB(x).
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Proposition 6.1.2. If A ∈ Fn×n with

A =

(
B 0
0 C

)
, where B ∈ Fn1×n1 , C ∈ Fn2×n2 , n = n1 + n2,

then
mA(x) = lcm(mB(x),mC(x)).

Proof. Since

A =

(
B 0
0 C

)
,

we know that for every φ(x) ∈ F[x],

φ(A) =

(
φ(B) 0
0 φ(C)

)
.

Setting φ(x) = mA(x) we get

mA(A) =

(
mA(B) 0

0 mA(C)

)
= 0,

hencemA(B) = 0 andmA(C) = 0. Therefore

mB(x) | mA(x) and mC(x) | mA(x) ⇒ lcm(mB(x),mC(x)) | mA(x).

Define ψ(x) = lcm(mB(x),mC(x)). Then

ψ(A) =

(
ψ(B) 0
0 ψ(C)

)
= 0,

somA(x) | ψ(x). Since both are monic, we conclude

mA(x) = ψ(x).

Observation 6.1.2. If

A =

A1 · · · 0
... . . . ...
0 · · · Ak

 ∈ Fn×n, where Ai ∈ Fni×ni , n1 + · · ·+ nk = n,

then
mA(x) = lcm(mA1(x), . . . ,mAk

(x)).
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Proof. This follows immediately from Proposition 6.1.2 and induction on k.

Corollary 6.1.1. Let A = diag(λ1, · · · , λ1, · · · , λk, · · · , λk) with λi 6= λj for all i 6= j. Then

mA(x) = (x− λ1) · · · (x− λk).

Proof. This is immediate by applying Notation 6.1.2 to Ai = λiIni .

Observation 6.1.3. Let A ∈ Fn×n be diagonalizable, i.e. similar to a diagonal matrix. By Propo-
sition 6.1.1 and Corollary 6.1.1, the polynomialmA(x) is a product of distinct linear factors.

Example 6.1.4. Consider the matrix

A =


4 1
2 3

O

O
2 0
3 0

 ∈ R4×4.

Equivalently, write A =

(
B O

O C

)
with

B =

(
4 1
2 3

)
, C =

(
2 0
3 0

)
.

By computation we find

mB(x) = (x− 2)(x− 5), mC(x) = x(x− 2).

By Proposition 6.1.2,

mA(x) = lcm(mB(x),mC(x)) = x(x− 2)(x− 5).

Example 6.1.5. LetA =

(
B ∗
O C

)
. Then in general it is not true (why?) thatmA(x) = lcm(mB(x),mC(x)).

What is always true is that lcm(mB(x),mC(x)) | mA(x).
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6.2 Diagonalizability Criterion

Motivation. Let A be diagonalizable. Then A is similar to a diagonal matrix

D = diag(λ1, · · · , λ1, · · · , λk, · · · , λk)

with λi 6= λj for i 6= j. By Proposition 6.1.1 and Corollary 6.1.1 we have

mA(x) = (x− λ1)(x− λ2) · · · (x− λk),

i.e. a product of distinct monic linear factors in F[x]. We will show that the converse also holds.

Theorem 6.2.1 (Diagonalizability criterion viamA(x)). Let A ∈ Fn×n. Then A is diagonalizable
if and only ifmA(x) is a product of distinct monic linear factors in F[x].

Proof. If A is diagonalizable, the claim follows immediately from Corollary 6.1.1.

Conversely, assume
mA(x) = (x− λ1) · · · (x− λk)

with λi 6= λj for i 6= j. We know the distinct eigenvalues of A are precisely the λi, i = 1, . . . , k.
We will show that

Fn×1 = VA(λ1) + VA(λ2) + · · ·+ VA(λk).

Define the following polynomials:2

ai(x) =
∏
j ̸=i

(x− λj).

Then
gcd(a1(x), . . . , ak(x)) = 1.

Hence there exist bi(x) ∈ F[x] such that

1 =

k∑
i=1

ai(x)bi(x).

Therefore

In =

k∑
i=1

ai(A)bi(A),

2For example, for k = 3: a1(x) = (x− λ2)(x− λ3), a2(x) = (x− λ1)(x− λ3), a3(x) = (x− λ1)(x− λ2).



Konstantinos Bizanos Linear Algebra II

i.e. for every X ∈ Fn×1 we have

X =

k∑
i=1

ai(A)bi(A)X.

Claim: For each i = 1, . . . , k, we have ai(A)bi(A)X ∈ VA(λi).

Indeed, note that

(A− λiIn)ai(A)bi(A)X = mA(A)bi(A)X = 0,

since (x−λi)ai(x) = mA(x). Hence each term ai(A)bi(A)X lies in the corresponding eigenspace
VA(λi).

Thus

Fn×1 ⊆
k∑

i=1

VA(λi) ⇒ Fn×1 =
k∑

i=1

VA(λi),

and by Theorem 4.2.1, the matrix A is diagonalizable.

6.3 Minimal Polynomial of a Linear Map

Definition 6.3.1. Let f : V → V be a linear map and let â be an ordered basis of V . Define
mf (x) = mA(x), whereA = (f : â, â). The polynomialmf (x) is called theminimal polynomial
of f .

Observation 6.3.1. Since similar matrices have the same minimal polynomial, the definition of
mf (x) does not depend on the choice of â.

Properties 6.3.1 (Minimal polynomial of a linear map). Let f : V → V be a linear map. The
following hold:

i. mf (x) is monic, mf (f) = 0, and among polynomials with these properties it has minimal
degree.

ii. If φ(f) = 0 with φ(x) ∈ F[x], thenmf (x) | φ(x). In particular,mf (x) | χf (x).
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iii. Every eigenvalue of f is a root ofmf (x). The polynomialsmf (x) and χf (x) have the same
roots.

iv. The map f is diagonalizable if and only if mf (x) = (x − λ1)(x − λ2) · · · (x − λk) with
λi 6= λj for i 6= j.

Proof. These properties follow immediately from the corresponding results for matrices. As an
illustration we prove property (i).

Let A = (f : â, â). We know that for every φ(x) ∈ F[x],

φ(A) = (φ(f) : â, â)

by Proposition 2.4.1. Hence

(mf (f) : â, â) = mf (A) = mA(A) = 0,

so mf (f) = 0. Since mA(x) is monic and has minimal degree, the same is true for mf (x) by
definition.

6.4 Simultaneous Diagonalization

Question 6.4.1. Let A,B ∈ Fn×n be diagonalizable. Then there exist invertible PA, PB ∈ Fn×n

such that P−1
A APA and P−1

B BPB are diagonal. When does there exist a common invertible P such
that P−1AP and P−1BP are diagonal?

Observation 6.4.1. Assume such a P exists, i.e. P is invertible with P−1AP = ∆A diagonal and
P−1BP = ∆B diagonal. Then A = P∆AP

−1 and B = P∆BP
−1, and we observe that

AB = P∆A∆BP
−1 and BA = P∆B∆AP

−1.

Since ∆A,∆B are diagonal, we have ∆A∆B = ∆B∆A, i.e. AB = BA. We will show that the
converse also holds. We study the corresponding problem for linear maps.

6.4.1 Invariant Subspaces

Definition 6.4.1. Let f : V → V be a linear map. A subspace U ≤ V is called f -invariant if
f(U) ⊆ U , i.e. for every u ∈ U we have f(u) ∈ U .
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Example 6.4.1. Let f : V → V be a linear map.

i. The subspaces {0} and V are f -invariant.

ii. The subspaces ker f and Im f are f -invariant. Indeed:

• If u ∈ ker f , then f(u) = 0 ∈ ker f .
• If v ∈ Im f , then there exists u ∈ V such that f(u) = v, hence f(v) = f(f(u)) ∈ Im f .

iii. Every eigenspace Vf (λ) is f -invariant. Indeed, if u ∈ Vf (λ) then f(u) = λu ∈ Vf (λ).

iv. If U1, U2 ≤ V are f -invariant, then U1 + U2 is also f -invariant.

v. The sum of f -invariant eigenspaces is f -invariant.

vi. Let f : R2 → R2 with f(x, y) = (x, x+ y).

• f(e2) = e2 and f(e1) = e1 + e2, where e1, e2 is the standard basis of R2.
• Hence 〈e2〉 is f -invariant, while 〈e1〉 is not (show why).

vii. If U ≤ V with dimU = 1, then U is f -invariant if and only if U = 〈u〉 for some eigenvector
u of f (show why).

Observation 6.4.2. Let U be f -invariant. Then f(U) ⊆ U , so the restriction of f to U , denoted
by fU , is the linear map

fU : U → U, fU (u) = f(u), for every u ∈ U.

Proposition 6.4.1. Let f : V → V be a linear map and let U be an f -invariant subspace of V . If f
is diagonalizable, then the restriction fU : U → U is also diagonalizable.

Proof. By Property 6.3.1(iv), if f is diagonalizable then

mf (x) = (x− λ1) · · · (x− λk), with λi 6= λj for i 6= j.

We claim thatmfU (x) | mf (x). If so, thenmfU (x) is also a product of distinct linear factors, hence
fU is diagonalizable by the same property.

Indeed, for every u ∈ U we have

mf (fU )(u) = mf (f)(u) = 0.

HencemfU (x) | mf (x).
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6.4.2 Simultaneous Diagonalization

Theorem 6.4.1. Let f, g : V → V be linear maps. The following are equivalent:

i. There exists a basis of V whose elements are eigenvectors of both f and g.

ii. The maps f and g are diagonalizable and, moreover, f ◦ g = g ◦ f .

Proof. • i. ⇒ ii. Assume there exists a basis {v1, . . . , vn} of V with f(vi) = λivi and g(vi) =
µivi for each i, where λi, µi ∈ F.

We claim that f ◦ g = g ◦ f . Indeed,

(f ◦ g − g ◦ f)(vi) = f(g(vi))− g(f(vi)) = f(µivi)− g(λivi)

= µif(vi)− λig(vi)

= µiλivi − λiµivi

= 0.

Thus f ◦ g = g ◦ f . Finally, by Theorem 4.3.1(ii), it follows that f and g are diagonalizable.

• ii. ⇒ i. Since f is diagonalizable, we have

V = Vf (λ1) + · · ·+ Vf (λk),

where λj are the distinct eigenvalues of f .

We claim that if f ◦ g = g ◦ f , then each Vf (λi) is g-invariant. Indeed, let v ∈ Vf (λi), i.e.
f(v) = λiv. Then

g(f(v)) = g(λiv) = λig(v) ⇒ f(g(v)) = λig(v) ⇒ g(v) ∈ Vf (λi).

Hence Vf (λi) is g-invariant.

Let gi be the restriction of g to Vf (λi). Since g is diagonalizable and Vf (λi) is g-invariant,
Proposition 6.4.1 implies that gi is diagonalizable. Therefore there exists a basisBi of Vf (λi)
consisting of eigenvectors of g. SinceBi ⊆ Vf (λi), each element ofBi is also an eigenvector
of f .

Letting B =
⋃k

i=1Bi, we obtain the desired basis of V , whose elements are eigenvectors of
both f and g. 3

3The point is that dim
∑k

i=1 Vf (λi) =
∑k

i=1 dimVf (λi), hence dimV =
∑

i |Bi|.
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Let us see why the corresponding statement holds for matrices. Consider the linear maps

LA, LB : Fn×1 → Fn×1, LA(X) = AX, LB(X) = BX.

If Theorem 6.4.1(i) holds, then there exists a basis B of Fn×1 whose elements are eigenvectors of
LA and LB .

Hence LA and LB are diagonalizable and LA ◦ LB = LB ◦ LA. This is equivalent to saying
that the matrices A and B are diagonalizable and AB = BA, since

BA = (LB : Ê, Ê) · (LA : Ê, Ê)

= (LB ◦ LA : Ê, Ê)

= (LA ◦ LB : Ê, Ê)

= (LA : Ê, Ê) · (LB : Ê, Ê) = AB.
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6.5 Exercises of Chapter 6.

Group A: 1, 2, 3, 4, 5, 7, 10, 12, 15, 16, 17, 18, 19, 21, 30, 32, 36
Group B: 6, 8, 9, 11, 13, 14, 20, 22, 23, 24, 26, 28, 29, 31, 33, 34, 35, 37
Group C: 25, 27, 38, 39, 40

Exercise 6.1. Let A =

2 2 1
1 3 1
1 2 2

 ∈ R3×3.

a. Find the minimal polynomial of A.

b. Determine whether A is diagonalizable.

c. Show that A is invertible and find φ(x) ∈ R[x] of degree at most 1 such that A−1 = φ(A).

d. Find ψ(x) ∈ R[x] of degree at most 1 such that A4 = ψ(A).

Exercise 6.2. Compute the characteristic and minimal polynomials of

A =

2 1 0
0 2 0
0 0 2

 , B =

2 1 0
0 2 1
0 0 2

 ∈ F3×3

and determine whether A and B are similar.

Exercise 6.3. Let v̂ = (v1, v2, v3) be an ordered basis of R3 and

f : R3 → R3, f(xv1 + yv2 + zv3) = (3x+ y)v1 + (2y + z)v2 + (−x− y + z)v3.

Find the minimal polynomial of f and determine whether there exists an ordered basis û ofR3 such
that (f : û, û) = A, where A is the matrix from the previous exercise.

Exercise 6.4. Consider the linear map f : R2[x] → R2[x] defined by f(φ(x)) = φ′(x)− 2φ(x).

a. Find the minimal polynomial of f and determine whether f is diagonalizable.

b. Find the dimension of each eigenspace of f .

Exercise 6.5. Let A ∈ Cn×n such that (A+3n)(A− 4In)(A+7In) = 0. Determine whether A is
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a. diagonalizable,

b. invertible.

Exercise 6.6. Determine all A ∈ R3×3 such that A3 − 3A2 + 2A = 0 and Tr(A) = 6.

Exercise 6.7. Find the characteristic polynomial and the minimal polynomial of

A =


2 5 0 0 0
0 2 0 0 0
0 0 4 2 0
0 0 3 5 0
0 0 0 0 7

 ∈ R5×5.

Determine whether A is diagonalizable.

Exercise 6.8. Let n > 1. Find the minimal polynomial of the linear map

f : Fn×n → Fn×n, f(A) = At

and determine whether it is diagonalizable.

Exercise 6.9. If f : V → V is a linear map such that f3 = f , then every v ∈ V can be written
uniquely as v = v−1 + v0 + v1, where vλ ∈ ker(f − λIn) for λ = −1, 0, 1.

Exercise 6.10. Show thatmA(x) = mAt(x) for every A ∈ Fn×n.

Exercise 6.11. Let Fn×n and letWA be the subspace of Fn×n generated by the matrices An with
n ≥ 0. Show that dimWA = degmA(x).

Exercise 6.12. Let A,B,C ∈ Fn×n and let

D =

(
A B
0 C

)
∈ F2n×2n.

a. Show that if D is diagonalizable, then A and C are diagonalizable.

b. Does the converse of (a) hold?
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Exercise 6.13. Find the minimal polynomial of
1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

 ∈ Fn×n.

Exercise 6.14. Show the following.

a. If degmA(x) = degχA(x), thenmA(x) = (−1)nχA(x).

b. We havemA(x) = xn − 1 andmB(x) = (x− 1)n, where

A =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
1 0 0 0 · · · 0


, B =



1 1 0 0 · · · 0
0 1 1 0 · · · 0
0 0 1 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
0 0 0 0 · · · 1


∈ Fn×n.

Exercise 6.15. Let

A =


1 0 0 0
a 1 0 0
b d 2 0
c e f 2

 ∈ R4×4.

Prove that A is diagonalizable if and only if a = f = 0.

Exercise 6.16. Let

A =

1 k −1
0 1 1
0 0 1

 ∈ C3×3.

a. Find the values of k such that degmA(x) ≤ 2.

b. For the value of k found above, compute A−1 usingmA(x).

c. Show that Am is not diagonalizable for every positive integerm.
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Exercise 6.17. Find the values of c ∈ R such that the polynomial (x − 3)1821(x1821 − 5x + c) is
annihilated by the matrix

A =

 1 0 0
3 1 −1
−6 0 3

 .

Exercise 6.18. Let f : Rn → Rn be a linear map with mf (x) = x(x − 1)2. Find all a, b, c ∈ R
such that f1821 + af2 + bf + c · 1Rn = 0.

Exercise 6.19. Let

A =

a 0 a
0 1 0
0 a −1

 ∈ R3×3.

For each of the following cases find all values of a ∈ R (if any) for which the stated property holds.

a. There exists an invertible matrix P ∈ R3×3 such that P−1AP is upper triangular.

b. There exists an invertible matrix P ∈ R3×3 such that P−1AP is diagonal.

c. The matrix A is annihilated by the polynomial (x− 1)(x− 2) · · · (x− 2010).

Exercise 6.20. Let A ∈ Cn×n such that Am = In for some positive integer m and Tr(A) = n.
Prove that A = In.

Exercise 6.21. Let A,B ∈ R2×2 with A 6= I2, B 6= −I2, and A3 −A2 +A− I2 = 0, B3 +B2 +
B + I2 = 0.

a. Show that A and B have the same minimal polynomial.

b. Do they have the same characteristic polynomial?

c. Determine whether A and B are triangularizable.

Exercise 6.22. Let A ∈ R3×3 with A2 − 9A + 20I3 = 0. Show that exactly one of the following
cases holds:

A = 4I3 or A = 5I3 or A is similar to diag(4, 4, 5) or A is similar to diag(4, 5, 5).
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Exercise 6.23. Let Ai ∈ R3×3, i = 1, · · · , 5, with A2
i − 9Ai + 20I3 = 0. Show that two of the

matrices Ai are similar.

Exercise 6.24. Let f, g : V → V be linear maps such that

gcd(mf (x),mg(x)) = 1.

a. Show that the linear mapmg(f) : V → V is an isomorphism.

b. Show that if ker f 6= {0V }, then ker g = {0V }.

Exercise 6.25. Let

A =


0 0 · · · 0 −a0
0 0 · · · 0 −a1
0 0 · · · 0 −a3
...

...
...

...
0 0 · · · 1 −an−1

 ∈ Fn×n.

In Exercise 3.17 we saw that χA(x) = (−1)n(xn + an−1x
n−1 + · · · + a0). Show that mA(x) =

(−1)nχA(x).

Exercise 6.26. Let A ∈ Fn×n and let φ(x) ∈ F[x]. Show that

φ(A) is invertible if and only if gcd(φ(x),mA(x)) = 1.

Exercise 6.27. LetA ∈ Rn×n be an invertible, triangularizable matrix such thatmA(x) = mA2(x).
Show that (A− In)n = 0.

Exercise 6.28. a. LetA,B ∈ C2×2 such thatmA(x) = mB(x). Show thatA andB are similar.

b. Let

C =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , D =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ∈ C4×4.

Show that χC(x) = χD(x) andmC(x) = mD(x), but the matrices C,D are not similar.
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Exercise 6.29. Let A ∈ Fn×n. Consider the linear map RA : Fn×n → Fn×n defined by RA(B) =
BA. Show the following.

a. If σ(x) ∈ F[x], then σ(RA)(B) = Bσ(A) for every B ∈ Fn×n, and

b. Is it true that χRA
(x) = χA(x)?

Exercise 6.30. Let A,B ∈ Fn×n. We know that χAB(x) = χBA(x) (see Exercise 3.27). Is it true
thatmAB(x) = mBA(x)?

Exercise 6.31. Determine which of the following statements are true. In each case give a proof or
a counterexample.

a. There exists A ∈ R4×4 with χA(x) = (x− 1)(x+ 1)3 andmA(x) = (x− 1)2(x+ 1).

b. Let A ∈ Cn×n such that A5 + 5A+ In = 0. Then A is diagonalizable.

c. There exists A ∈ R3×3 withmA(x) = (x− 1)(x− 3) and A similar to a matrix of the form∗ 0 ∗
∗ 2 ∗
∗ 0 ∗

?

Exercise 6.32. If f : V → V is a diagonalizable linear map and U is an f -invariant subspace of
V , then the restriction of f to U is diagonalizable.

Exercise 6.33. Let A ∈ Fn×n with detA = 0. Show that there exists a nonzero B ∈ Fn×n with
AB = BA = 0.

Exercise 6.34. Let A,B ∈ Fn×n such that A3 = A and B3 = B. Show the following.

a. A is diagonalizable and rank(A) = Tr(A2).

b. The matrices A,B are similar if and only if rank(A) = rank(B) and Tr(A) = Tr(B).

Exercise 6.35. Let A,B ∈ Fn×n with A2 − 3A = B2 − 3B = 0. Show the following:

a. If Tr(A) = Tr(B), then A and B are similar.
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b. If AB = BA, then φ(A+B) is diagonalizable for every φ(x) ∈ F[x].

Exercise 6.36. Let A ∈ R4×4 with χA(x) = x2(x − 1)(x − 2). Show that if AX = AY = 0,

where X =


1
1
0
0

 and Y =


0
1
1
0

, then A3 = 3A2 − 2A.

Exercise 6.37. Let A,B ∈ C6×6 withmA(x) = (x− 1)(x− 2) and χB(x) = (x− 3)4(x− 4)2.
Show that if VA(1) ⊆ VB(3) and VA(2) ⊆ VB(4), then AB = BA.

Exercise 6.38. Let A,B ∈ Cn×n such that AB = BA, A1821 = B1821 = In. Then A+B + In is
diagonalizable and invertible.

Exercise 6.39. Show that a matrixA ∈ Fn×n is diagonalizable if and only if there exist ai ∈ F and
Pi ∈ Fn×n such that A = a1P1 + · · ·+ akPk, P 2

i = Pi, and PiPj = PjPi for all i, j.

Exercise 6.40. Let A,B ∈ Fn×n. Show that eithermAB(x) = mBA(x) ormAB(x) = xmBA(x)
ormBA(x) = xmAB(x).

Exercise 6.41 (Review exercise). Determine which of the following statements are true. In each
case give a proof or a counterexample. Let A ∈ Fn×n.

a. Am = 0 for some positive integerm ⇔ An = 0.

b. A is invertible⇔ mA(0) 6= 0.

c. If A2 = 4A, then A is diagonalizable.

d. If B ∈ F2n×2n and B =

(
A 0
0 A

)
, thenmB(x) = mA(x).

e. If A is invertible, thenmAB(x) = mBA(x) for every B ∈ Fn×n.
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CHAPTER 7

THE STANDARD INNER PRODUCT ON Rn AND Cn

7.1 The Standard Inner Product

Definition 7.1.1. The map

〈·, ·〉 : Rn × Rn → R, 〈u, v〉 = u1v1 + · · ·+ unvn,

where u = (u1, . . . , un) and v = (v1, . . . , vn), is called the standard inner product on Rn.

• If u = (u1, . . . , un) ∈ Rn, the length (norm) of u is

|u| =
√
u21 + · · ·+ u2n =

√
〈u, u〉.

• The vectors u, v are said to be orthogonal (perpendicular) if 〈u, v〉 = 0.

Observation 7.1.1. For n = 2, one can prove that

cosϑ =
〈u, v〉
|u| · |v|

,

where ϑ is the angle between the vectors u and v. Hence, cosϑ = 0 if and only if

〈u, v〉 = 0.

121
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u⃗

v⃗

θ

Example 7.1.1. Let u, v ∈ R3 with u = (1, 1, 2) and v = (−1,−1, 1). Then

〈u, v〉 = (−1) · 1 + (−1) · 1 + 1 · 2 = 0,

so u and v are orthogonal.

Properties 7.1.1. For any vectors u, v, w ∈ Rn and any a ∈ R, the following properties of the
inner product hold:

i. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉,

ii. 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉,

iii. 〈au, v〉 = a〈u, v〉,

iv. 〈u, av〉 = a〈u, v〉,

v. 〈u, v〉 = 〈v, u〉,

vi. 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 ⇔ u = 0.

Proof. The proof of the above properties is a simple exercise and is left to the reader (yes, you).

Example 7.1.2. Let u, v ∈ Rn be two orthogonal vectors. Prove:

i. |u+ v|2 = |u|2 + |v|2,

ii. If |u| = |v|, then the vectors u+ v and u− v are orthogonal.

Proof. i. Compute:

|u+ v|2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉.

Since u ⊥ v we have 〈u, v〉 = 〈v, u〉 = 0, hence

|u+ v|2 = |u|2 + |v|2.
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ii. Compute:
〈u+ v, u− v〉 = 〈u, u〉 − 〈u, v〉+ 〈v, u〉 − 〈v, v〉.

Since u ⊥ v and |u| = |v|, it follows that

〈u+ v, u− v〉 = |u|2 − |v|2 = 0.

Thus u+ v and u− v are orthogonal.

Reminder 7.1.1. The set of complex numbers is defined by

C =
{
a+ bi | a, b ∈ R, i2 = −1

}
.

• Every z ∈ C can be written uniquely as z = a+ bi, with a, b ∈ R.

• The complex conjugate of z = a+ bi is z = a− bi.

• Themodulus of z is |z| =
√
a2 + b2.

• Additional properties:

|z|2 = z z, z1 + z2 = z1 + z2, z1z2 = z1 z2.

Definition 7.1.2. The standard inner product on Cn is the map

〈·, ·〉 : Cn × Cn → C, 〈u, v〉 = u1v1 + u2v2 + · · ·+ unvn,

where u = (u1, . . . , un) and v = (v1, . . . , vn).

• The length of u is
|u| =

√
|u1|2 + · · ·+ |un|2 =

√
〈u, u〉.

• The vectors u, v are orthogonal if 〈u, v〉 = 0.

Example 7.1.3. If u = (1, i) and v = (−1, i), then

〈u, u〉 = 1 · 1 + i · i = 1 + 1 = 2, 〈u, v〉 = 1 · (−1) + i · i = −1 + 1 = 0.

Hence u and v are orthogonal.
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Properties 7.1.2. For any vectors u, v, w ∈ Cn and any a ∈ C, the following hold:

i. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

ii. 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

iii. 〈au, v〉 = a〈u, v〉

iv. 〈u, av〉 = a〈u, v〉

v. 〈u, v〉 = 〈v, u〉

vi. 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 ⇔ u = 0

Proof. As an example, we prove property (iv).

Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vectors in Cn. Then

av = (av1, . . . , avn),

and therefore

〈u, av〉 = u1av1 + · · ·+ unavn = a (u1v1 + · · ·+ unvn) = a 〈u, v〉.

7.2 Orthonormal Bases

7.2.1 Orthonormal bases and the Gram–Schmidt method

Definition 7.2.1. Let V ⊆ Fn. A basis {v1, . . . , vm} of V is called orthonormal if:

i. |vi| = 1 for each i = 1, . . . ,m,

ii. 〈vi, vj〉 = 0 for every i 6= j.
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Example 7.2.1. For V = R2, the standard basis ê = {e1 = (1, 0), e2 = (0, 1)} is orthonormal.
Likewise, the basis {(

−
√
2

2
,

√
2

2

)
,

(√
2

2
,

√
2

2

)}
is an orthonormal basis of R2 (show why).

These examples can be generalized as follows:

For every angle φ, the vectors u = (cosφ, sinφ) and v = (− sinφ, cosφ) form an orthonormal
basis of R2.

Indeed,
|u| =

√
cos2 φ+ sin2 φ = 1, |v| =

√
sin2 φ+ cos2 φ = 1,

and
〈u, v〉 = cosφ(− sinφ) + sinφ cosφ = 0.

Observation 7.2.1. Let {v1, v2, . . . , vm} be an orthonormal basis of V and let v ∈ V . Then there
exist unique scalars ai ∈ F such that

v = a1v1 + · · ·+ amvm.

Moreover,
ai = 〈v, vi〉.

Indeed,

〈v, vi〉 =
m∑
j=1

aj〈vj , vi〉 = ai.

Proposition 7.2.1. Every nonzero subspace of R2 has an orthonormal basis.

Proof. Let V ≤ R2. By the basis existence theorem, V has a basis {u1, u2}. Define

v1 = u1

and
v2 = u2 − proju1

u2,
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where proju1
u2 is the projection of u2 onto u1. Then v1 and v2 are orthogonal, and{

v1
|v1|

,
v2
|v2|

}
is an orthonormal basis of V .

u1

u2u2 − proju1
u2

proju1
u2

Next we study the Gram–Schmidt method and see that the above result generalizes to every
subspace of Rn.

Gram–Schmidt Orthonormalization Method

We first describe the method for n = 3. Let V ≤ F3 and let {u1, u2, u3} be a basis of V .
Define the following vectors in V :

i. v1 = u1

ii. v2 = u2 −
〈u2, v1〉
|v1|2

v1, where projv1u2 =
⟨u2,v1⟩
|v1|2 v1

iii. v3 = u3 −
〈u3, v2〉
|v2|2

v2 −
〈u3, v1〉
|v1|2

v1, where the terms are the corresponding projections

Then {
v1
|v1|

,
v2
|v2|

,
v3
|v3|

}
is an orthonormal basis of V (show why).
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v3

w3

u3

Figure for n = 3.

General case. Let {u1, . . . , um} be a basis of V and define recursively v1, . . . , vm by

v1 = u1, vi = ui −
i−1∑
j=1

〈ui, vj〉
|vj |2

vj , for i ≥ 2.

Then {
v1
|v1|

, . . . ,
vm
|vm|

}
is an orthonormal basis of V .

Theorem 7.2.1. Every nonzero subspace of Fn has an orthonormal basis.

Proof. Let V ≤ Fn. By the basis existence theorem, V has a basis {u1, . . . , um}. Applying Gram–
Schmidt to this basis yields the desired result.

Example 7.2.2. Find an orthonormal basis of

V = {(x, y, z) ∈ R3 | x+ y + z = 0}.

Proof. First find a basis of V :

V = {(x, y,−x− y) | x, y ∈ R}
= {x(1, 0,−1) + y(0, 1,−1) | x, y ∈ R}
= 〈(1, 0,−1), (0, 1,−1)〉.
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Thus {u1, u2} is a basis, with u1 = (1, 0,−1) and u2 = (0, 1,−1). Apply Gram–Schmidt:

v1 = u1 = (1, 0,−1), v2 = u2 −
〈u2, v1〉
|v1|2

v1 =

(
−1

2
, 1,−1

2

)
.

Therefore an orthonormal basis is{
v1
|v1|

,
v2
|v2|

}
, where

v1
|v1|

=
1√
2
(1, 0,−1),

v2
|v2|

=
1√
6
(−1, 2,−1).

Example 7.2.3. Find an orthonormal basis of V = 〈a, b, c〉, where

a = (1, 1, 1, 1), b = (1, 1, 1,−1), c = (3, 3, 3,−1).

Proof. To find a basis of V we row-reduce the matrix with rows a, b, c:1 1 1 1
1 1 1 −1
3 3 3 −1

 −→

1 1 1 0
0 0 0 1
0 0 0 0

 .

Hence {u1, u2} is a basis of V , where u1 = (1, 1, 1, 0) and u2 = (0, 0, 0, 1). Here 〈u1, u2〉 = 0, so
Gram–Schmidt is not needed. Set v1 = u1 and v2 = u2, and obtain

v1
|v1|

=
1√
3
(1, 1, 1, 0),

v2
|v2|

= (0, 0, 0, 1),

which form an orthonormal basis of V .

7.2.2 Orthogonal complement of a subspace of Fn

Definition 7.2.2. Let V ≤ Fn. The orthogonal complement of V is the set

V ⊥ = {u ∈ Fn | 〈u, v〉 = 0 for every v ∈ V }.

Proposition 7.2.2. V ⊥ is a subspace of Fn.
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Proof. First, V ⊥ 6= ∅ since 0Fn ∈ V ⊥. Let u1, u2 ∈ V ⊥, i.e. 〈u1, v〉 = 〈u2, v〉 = 0 for all v ∈ V .
Then

〈u1 − u2, v〉 = 〈u1, v〉 − 〈u2, v〉 = 0,

so u1 − u2 ∈ V ⊥. Also, if u ∈ V ⊥ and λ ∈ F, then

〈λu, v〉 = λ〈u, v〉 = 0,

so λu ∈ V ⊥.

Example 7.2.4.

V

V ⊥

V

V ⊥

Proposition 7.2.3. Let V ≤ Fn. Then:

i. Fn = V ⊕ V ⊥,

ii. dimV ⊥ = n− dimV ,

iii. If V ≤ U , then U⊥ ≤ V ⊥,

iv. (V ⊥)⊥ = V .

Proof. i. We show that Fn = V + V ⊥ and that V ∩ V ⊥ = {0}. By Theorem 7.2.1, V has an
orthonormal basis {v1, . . . , vm} (if V = {0} the claim is immediate).

Let w ∈ Fn. Write w = v + (w − v), where

v =

m∑
i=1

〈w, vi〉 vi ∈ V.
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Then w − v ∈ V ⊥, since for each i,

〈w − v, vi〉 = 〈w, vi〉 − 〈v, vi〉 = 〈w, vi〉 −
∑
t

〈w, vt〉〈vt, vi〉 = 〈w, vi〉 − 〈w, vi〉 = 0.

Thus w ∈ V +V ⊥. Finally, if v ∈ V ∩V ⊥, then 〈v, v〉 = 0 ⇔ v = 0, hence V ∩V ⊥ = {0}.

ii. Immediate from (i), since

n = dim(V ⊕ V ⊥) = dimV + dimV ⊥.

iii. Immediate from the definition: if 〈w, u〉 = 0 for all u ∈ U , then in particular 〈w, v〉 = 0 for
all v ∈ V , so w ∈ V ⊥.

iv. Since every v ∈ V satisfies 〈v, u〉 = 0 for all u ∈ V ⊥, we have V ⊆ (V ⊥)⊥. Also,

dim(V ⊥)⊥ = n− dimV ⊥ = n− (n− dimV ) = dimV,

so (V ⊥)⊥ = V .

How to find V ⊥

Proposition 7.2.4 (Extending an orthonormal basis). Let V ≤ Fn. By Theorem 7.2.1, there exists
an orthonormal basis of V , say {v1, . . . , vm}. Then there exists an orthonormal basis of Fn of the
form

{v1, . . . , vm, vm+1, . . . , vn}.

Proof. Let {v1, . . . , vm} be an orthonormal basis of V . By the basis extension theorem,

{v1, . . . , vm, u1, . . . , uk}

is a basis of Fn. Apply Gram–Schmidt to this basis to obtain an orthonormal basis

{v1, . . . , vm, vm+1, . . . , vn}

of Fn.

With this notation, {v1, . . . , vm} is an orthonormal basis of V and {vm+1, . . . , vn} is an or-
thonormal basis of V ⊥.

In summary, one method to find an orthonormal basis of V ⊥ is:
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i. Start with a basis B = {u1, . . . , um} of V .

ii. Apply Gram–Schmidt to B to obtain an orthonormal basis

B′ = {v1, . . . , vm}

of V .

iii. Extend B′ to a basis of Fn:

B′′ = {v1, . . . , vm, w1, . . . , wk}.

iv. Apply Gram–Schmidt to B′′ to obtain an orthonormal basis {v1, . . . , vn} of Fn. Then

W = {vm+1, . . . , vn}

is an orthonormal basis of V ⊥.

7.3 Hermitian and Unitary Matrices

7.3.1 The matrix A∗, the standard inner product, and matrix multiplication

Definition 7.3.1. Let A = (aij) ∈ Cn×n. The matrix

A = (aij)

is called the conjugate of A, and
A∗ = (A)t

is the conjugate transpose (adjoint) of A.

Example 7.3.1. Consider

A =

(
2− i 4
5 + 2i 0

)
∈ C2×2.

Then

A =

(
2 + i 4
5− 2i 0

)
, A∗ =

(
2 + i 5− 2i
4 0

)
.
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Wewill often regard the standard inner product as defined on column vectors, i.e. 〈·, ·〉 : Cn×1×
Cn×1 → C. If

X =

x1...
xn

 , Y =

y1...
yn

 ∈ Cn×1,

then

〈X,Y 〉 =
n∑

i=1

xiyi.

Note that 〈X,Y 〉 = XtY .

Lemma 7.3.1. Let A ∈ Cn×n. Then:

i. For all X,Y ∈ Cn×1, 〈AX, Y 〉 = 〈X,A∗Y 〉.

ii. If 〈AX, Y 〉 = 0 for all X,Y ∈ Cn×1, then A = 0.

Proof. i. We have
〈AX, Y 〉 = (AX)tY .

Also,
〈X,A∗Y 〉 = XtA∗Y = XtAtY = (AX)tY .

Hence they are equal.

ii. Take X = Ei and Y = Ej , where Ek is the kth standard basis column. Then

〈AX, Y 〉 = 〈AEi, Ej〉 = aji.

Since this is 0 for all i, j, all entries of A are zero, hence A = 0.

7.3.2 Hermitian Matrices

Definition 7.3.2. A matrix A ∈ Cn×n is called Hermitian if A∗ = A.

Observation 7.3.1. i. A matrix A ∈ Rn×n is Hermitian if and only if it is symmetric.

ii. A matrix A = (aij) ∈ Cn×n is Hermitian if and only if aii = aii and aij = aji for all i 6= j.



Linear Algebra II Konstantinos Bizanos

Example 7.3.2. i. The matrix

A =

(
2 4− 5i

4 + 5i 6

)
is Hermitian since

A∗ = (A)t = A.

ii. The matrix
B =

(
2 4− 3i

4 + 5i 6

)
is not Hermitian since

B∗ =

(
2 4− 5i

4 + 3i 6

)
6= B.

Properties 7.3.1. Let A ∈ Cn×n be Hermitian. Then:

i. Every eigenvalue of A is real.

ii. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. i. Let λ ∈ C be an eigenvalue of A with eigenvector X 6= 0, so AX = λX . Then

〈AX,X〉 = 〈λX,X〉 = λ〈X,X〉.

By Lemma 7.3.1,

〈AX,X〉 = 〈X,A∗X〉 = 〈X,AX〉 = 〈X,λX〉 = λ 〈X,X〉.

Hence
(λ− λ)〈X,X〉 = 0.

Since X 6= 0, we have 〈X,X〉 6= 0, therefore λ = λ, i.e. λ ∈ R.

ii. Let λ 6= µ be eigenvalues with eigenvectorsX,Y :

AX = λX, AY = µY.

Then
〈AX, Y 〉 = 〈λX, Y 〉 = λ〈X,Y 〉,

and also
〈AX, Y 〉 = 〈X,A∗Y 〉 = 〈X,AY 〉 = 〈X,µY 〉 = µ 〈X,Y 〉.
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By (i), µ ∈ R, so µ = µ. Thus
(λ− µ)〈X,Y 〉 = 0.

Since λ 6= µ, it follows that 〈X,Y 〉 = 0, i.e. X ⊥ Y .

The reader is invited to compare Property 7.3.1(ii) with the familiar fact for arbitrary matrices,
namely that distinct eigenvalues correspond to linearly independent eigenvectors.

7.3.3 Unitary Matrices

Definition 7.3.3. A matrix A ∈ Cn×n is called unitary if

AA∗ = A∗A = In.

Observation 7.3.2. Let A ∈ Cn×n.

i. A is unitary if and only if it is invertible and A−1 = A∗.

ii. A is unitary if and only if AA∗ = In ⇔ A∗A = In.

iii. If A ∈ Rn×n, then A is unitary (orthogonal) if and only if it is invertible and A−1 = At.

Example 7.3.3. i. The identity matrix In is unitary.

ii. The matrix

Aφ =

(
cosφ − sinφ
sinφ cosφ

)
is unitary (orthogonal), since AφA

t
φ = I2. Geometrically, Aφ represents a rotation of the

plane by angle φ.

iii. The matrix

A =

0 1 0
1 0 0
0 0 1


is unitary (orthogonal), since A = At and AAt = I3.
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iv. The matrix
A =

(
2 −1
1 2

)
is not unitary, since AAt = 5I2. However, the matrix 1√

5
A is unitary.

Proposition 7.3.1. Let A,B ∈ Cn×n be unitary. Then:

i. | detA| = 1,

ii. the matrices AB and AB−1 are unitary,

iii. the matrix
(
1 O

O A

)
∈ C(n+1)×(n+1) is unitary.

Proof. i. Since A is unitary, AA∗ = In. Taking determinants,

detA · detA∗ = detA · detA = detA · detA = | detA|2 = 1,

so | detA| = 1.

ii. Since A,B are unitary,

(AB)(AB)∗ = ABB∗A∗ = AA∗ = In,

and similarly (AB)∗(AB) = In, so AB is unitary. Also B∗B = In implies B−1(B−1)∗ =
In, hence B−1 is unitary, so AB−1 is unitary.

iii. Immediate, since (
1 O

O A

)∗
=

(
1 O

O A∗

)
.

Theorem 7.3.1 (Characterizations of unitary matrices). Let A ∈ Cn×n. The following are equiva-
lent:

i. A is unitary.

ii. 〈AX,AY 〉 = 〈X,Y 〉 for all X,Y ∈ Cn×1.
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iii. The columns of A form an orthonormal basis of Cn×1.

iv. The rows of A form an orthonormal basis of Cn×1.

v. |AX| = |X| for all X ∈ Cn×1.

Proof. • i. ⇒ ii. If A is unitary, then A∗A = In. Hence

〈AX,AY 〉 = 〈X,A∗AY 〉 = 〈X,Y 〉.

• ii. ⇒ iii. Take X = Ei and Y = Ej . Then 〈AEi, AEj〉 = 〈Ei, Ej〉, so

〈A(i), A(j)〉 =

{
1, i = j,

0, i 6= j,

i.e. the columns of A are orthonormal.

• iii. ⇒ iv. From 〈A(i), A(j)〉 = δij we get AtA = In, i.e. A∗A = In, hence the rows are
orthonormal.

• iv. ⇒ i. If the rows are orthonormal, then AA∗ = In, so A is unitary.

• ii. ⇒ v. Put X = Y .

• v. ⇒ ii. Assume |AX| = |X| for all X . For arbitrary X,Y ,

|A(X + Y )| = |X + Y |.

Squaring and expanding gives

〈AX,AY 〉+ 〈AY,AX〉 = 〈X,Y 〉+ 〈Y,X〉 (α).

Replace Y by iY to get

−i〈AX,AY 〉+ i〈AY,AX〉 = −i〈X,Y 〉+ i〈Y,X〉 (β).

Adding (α) and i · (β) yields 〈AX,AY 〉 = 〈X,Y 〉.

After proving the theorem, let us add two remarks.
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i. Property (v) says that a unitary matrix preserves lengths.

x

y

X

A

x

y

AX

Preservation of vector length.

ii. Property (ii) shows that angles are preserved: if

cosϑ =
〈X,Y 〉
|X| · |Y |

,

then cosϑ does not change under a unitary transformation.

x

y

X
Y

ϑ

A

x

y

AX

AY

ϑ

Preservation of angles.

Corollary 7.3.1. Every eigenvalue of a unitary matrix has modulus 1.

Proof. Let A ∈ Cn×n be unitary. The claim follows immediately from Theorem 7.3.1(v) applied
to an eigenvector X 6= 0 of A.
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7.4 Exercises of Chapter 7.

Group A: 1, 2, 3, 4, 5, 7, 8, 10, 11, 13
Group B: 6, 9, 12, 14, 16, 17, 18, 19
Group C: 15

Exercise 7.1. Let u, v ∈ Rn.

a. If 〈u, v〉 = 0, then |u+ v|2 = |u|2 + |v|2. When n = 2, this is the Pythagorean theorem.

b. If |u| = |v|, then u + v and u − v are orthogonal. When n = 2, this says that the diagonals
of a rhombus are perpendicular.

c. |u+ v|2 + |u− v|2 = 2|u|2 + 2|v|2. Give a geometric interpretation when n = 2.

Exercise 7.2. a. Find an orthonormal basis of R3 that contains the vector u = 1√
2
(1, 0, 1).

b. Find an orthonormal basis ofR3 that contains the vectors u1 = 1√
5
(1, 0, 2) and u2 = (0, 1, 0).

Exercise 7.3. Let {u1, . . . , un} be an orthonormal basis of Cn and let V = 〈u1, . . . , uk〉 with
1 ≤ k < n. Show that an orthonormal basis of V ⊥ is {uk+1, . . . , un}.

Exercise 7.4. Let V be the subspace of R4 generated by

v1 = (1, 1,−1,−1), v2 = (1, 2, 3,−1), v3 = (4, 7, 8,−4).

After finding a basis of V , find an orthonormal basis of V and an orthonormal basis of V ⊥.

Exercise 7.5. Let

V = {(x, y, z) ∈ R3 : x− 2y + z = 0}, W = {(x, y, z) ∈ R3 : x+ y + z = 0}.

Find an orthonormal basis for each of the subspaces V , V ⊥, V ∩W , and (V ∩W )⊥.

Exercise 7.6. Let W1,W2 ≤ Fn. Show that (W1 +W2)
⊥ = W⊥

1 ∩W⊥
2 and (W1 ∩W2)

⊥ =
W⊥

1 +W⊥
2 .

Exercise 7.7. Let A,B ∈ Cn×n. Prove:
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a. (A)t = At.

b. det(A∗) = det(A) = det(A).

c. (A∗)∗ = A.

d. (λA)∗ = λA∗ for every λ ∈ C.

e. (A+B)∗ = A∗ +B∗.

f. (AB)∗ = B∗A∗.

g. If A is invertible, then (A∗)−1 = (A−1)∗.

Exercise 7.8. Let A ∈ Cn×n. If ϕ(x) ∈ C[x], ϕ(x) = anx
n + · · ·+ a1x+ a0, define

ϕ(x) = anx
n + · · ·+ a1x+ a0.

Show:

a. χA∗(x) = χA(x).

b. mA∗(x) = mA(x).

c. λ is an eigenvalue of A iff λ is an eigenvalue of A∗.

Exercise 7.9. Let A ∈ Cn×n with A∗A = −A. Show that A is similar to a diagonal matrix of the
form

diag(0, . . . , 0,−1, . . . ,−1),

and that rank(A) + rank(A+ In) = n.

Exercise 7.10. Let A,B ∈ Cn×n be unitary. Show:

a. A, At, and A−1 are unitary.

b. If λ is an eigenvalue of A, then |λ| = 1 and 1
λ is an eigenvalue of A∗.

c. | detA| = 1.

d. AB and AB−1 are unitary.
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Exercise 7.11. Find a unitary matrix whose first row is
(

1√
10

0 3√
10

)
.

Exercise 7.12. Let U ∈ Cn×n be unitary with det(U − In) 6= 0. Then the matrix H ∈ Cn×n

defined by
iH = (U + In)(U − In)

−1

is Hermitian.

Exercise 7.13. Let A ∈ Cn×n. Show that if any two of the following hold, then the third holds as
well:

a. A is Hermitian.

b. A is unitary.

c. A2 = In.

Exercise 7.14. Let A ∈ Rn×n be unitary (orthogonal). Show:

a. If detA = 1 and n is odd, then 1 is an eigenvalue of A.

b. If detA = −1 and n is even, then 1 is an eigenvalue of A.

c. If detA = −1, then −1 is an eigenvalue of A.

Exercise 7.15. Let A,B ∈ Rn×n be unitary (orthogonal) with detA = − detB. Then

det(A+B) = 0.

Exercise 7.16. Let A ∈ Cn×n with A∗ = −A. Show:

a. Every eigenvalue of A is of the form iµ with µ ∈ R.

b. The matrix A+ In is invertible and det(A+ In) > 1.

c. The matrix (In −A)(In +A)−1 is unitary.

Exercise 7.17. Let A ∈ Cn×n. Show that if |AX| = |X| for every X ∈ Cn×1, then A is unitary.
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Exercise 7.18. Let A ∈ Cn×n such that 〈AX,X〉 = 0 for every X ∈ Cn×1. Show that A = 0.
Does the same conclusion hold if A ∈ Rn×n and 〈AX,X〉 = 0 for every X ∈ Rn×1?

Exercise 7.19. Prove Exercise 7.17 using Exercise 7.18.

Exercise 7.20 (Review exercise). Decide which of the following statements are true. In each case
give a proof or a counterexample.

a. If A,B ∈ Cn×n are Hermitian, then A+B is Hermitian.

b. If A,B ∈ Cn×n are Hermitian, then AB is Hermitian.

c. If A,B ∈ Cn×n are Hermitian and AB = BA, then AB is Hermitian.

d. The matrix 
cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 cosϕ sinϕ
0 0 − sinϕ cosϕ


is unitary.

e. If A,B ∈ Cn×n are unitary, then every eigenvalue of AB has modulus 1.

f. There is no unitary A ∈ Cn×n such that (A− 2In)(A− 3In)(A− 4In) = 0.
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CHAPTER 8

NORMALMATRICES

8.1 Schur’s Lemma

Lemma 8.1.1 (Schur). i. (Complex version) For everyA ∈ Cn×n there exists a unitarymatrix
UA ∈ Cn×n such that U−1

A AUA is upper triangular.

ii. (Real version) For every triangularizable matrixA ∈ Rn×n there exists an orthogonal matrix
UA ∈ Rn×n such that U−1

A AUA is upper triangular.

Proof. i. The proof is similar to the proof of Theorem 5.1.1, with the difference that we seek a
unitary matrix UA.
We proceed by induction on the size n of A.

• Base case. For n = 1 the result is obvious.
• Inductive step. Assume the statement holds for every (n− 1)× (n− 1) matrix.
Let A ∈ Cn×n. Since A is triangularizable, the characteristic polynomial χA(x) splits
into linear factors. Let u be an eigenvector of A with eigenvalue λ. Set

v1 =
u

|u|
.

Then there exists an orthonormal basis {v1, . . . , vn} of Cn×1. Hence there exists U1 ∈
Cn×n whose columns are

U
(i)
1 = vi, i = 1, . . . , n.

143
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By Theorem 7.3.1, the matrix U1 is unitary, and

U−1
1 AU1 =

(
λ O

O B

)
, B ∈ C(n−1)×(n−1).

By the induction hypothesis, there exists a unitaryU2 ∈ C(n−1)×(n−1) such thatU−1
2 BU2

is upper triangular. Define

UA = U1

(
1 O

O U2

)
.

By Proposition 7.3.1, UA is unitary, and U−1
A AUA is upper triangular.

ii. The proof is exactly the same as in (i).

8.2 Spectral Theorem

Theorem 8.2.1 (Spectral Theorem). i. (Complex version) For every Hermitian matrix A ∈
Cn×n there exists a unitary matrix U ∈ Cn×n such that U−1AU is diagonal.

ii. (Real version) For every symmetric matrix A ∈ Rn×n there exists an orthogonal matrix
U ∈ Rn×n such that U−1AU is diagonal.

Proof. i. Let A ∈ Cn×n be Hermitian. By Schur’s Lemma there exists a unitary U ∈ Cn×n

such that U−1AU = T , where T is upper triangular. Since A = A∗, we have

UTU−1 = (UTU−1)∗ = (U−1)∗T ∗U∗ = UT ∗U−1 ⇒ T = T ∗.

Since T is upper triangular and equal to its conjugate transpose, it must be diagonal. More-
over, since T = T , it is real (its diagonal entries are real).

ii. The proof is analogous to (i), noting that a real symmetricA ∈ Rn×n is triangularizable over
R, since it is triangularizable over C and by Properties 7.3.1 all its eigenvalues are real.

Example 8.2.1. Consider the matrix

A =

 2 −1 1
−1 2 −1
1 −1 2

 ∈ R3×3.

Find an orthogonal matrix P such that P−1AP is diagonal.
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Proof. In the usual way, we find that
 1
−1
1

 is a basis of VA(4),


1
1
0

 ,

0
1
1

 is a basis of VA(1).

By Properties 7.3.1, every vector in VA(4) is orthogonal to every vector in VA(1), since A is real
symmetric. Applying Gram–Schmidt separately to each eigenspace, we obtain the following or-
thonormal bases:

• For VA(4):  1√
3

 1
−1
1

 .

• For VA(1):  1√
2

1
1
0

 ,
1√
6

−1
1
2

 .

Thus, setting

P =

 1/
√
3 1/

√
2 −1/

√
6

−1/
√
3 1/

√
2 1/

√
6

1/
√
3 0 2/

√
6

 ,

the matrix P is orthogonal and
P−1AP = diag(4, 1, 1).

8.3 Normal Matrices

Question 8.3.1. For which matrices A ∈ Cn×n does there exist a unitary matrix U ∈ Cn×n such
that U−1AU is diagonal? We saw in the previous subsection that Hermitian matrices have this
property. Are there others?

Observation 8.3.1. Suppose A ∈ Cn×n has the above property, i.e. there exists U ∈ Cn×n such
that U−1AU = ∆ is diagonal. Then A = U∆U−1. We compute:

AA∗ = U∆U−1 · (U∆U−1)∗ = U∆U−1(U−1)∗∆∗U∗ = U∆U−1U∆∗U−1 = U∆∆∗U−1.
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Similarly,
A∗A = U∆∗∆U−1.

But ∆ is diagonal, hence ∆∆∗ = ∆∗∆. Therefore AA∗ = A∗A. Later we will see that the
converse also holds.

Lemma 8.3.1. If T ∈ Cn×n is upper triangular and TT ∗ = T ∗T , then T is diagonal.

Proof. We prove the claim by induction on n.

• Base case. For n = 1 the statement is trivial.

• Inductive step. Let

T =


t11 t12 · · · t1n
0
...
0

T1

 ∈ Cn×n, T1 ∈ C(n−1)×(n−1)

with T1 upper triangular. The condition TT ∗ = T ∗T is equivalent to
t11 t12 · · · t1n
0
...
0

T1



t11 0 · · · 0

t12
...
t1n

T ∗
1

 =


t11 0 · · · 0

t12
...
t1n

T ∗
1



t11 t12 · · · t1n
0
...
0

T1

 .

Comparing the (1, 1)-entry yields

|t11|2 + |t12|2 + · · ·+ |t1n|2 = |t11|2,

hence t12 = · · · = t1n = 0. It follows that T1T ∗
1 = T ∗

1 T1, so by the induction hypothesis T1
is diagonal. Since the first row off-diagonal entries are 0 and T1 is diagonal, T is diagonal.

Theorem 8.3.1. Let A ∈ Cn×n. The following are equivalent:

i. There exists a unitary matrix U ∈ Cn×n such that U−1AU is diagonal.

ii. AA∗ = A∗A.
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Proof. • i. ⇒ ii. This was shown in Notation 8.3.1.

• ii. ⇒ i. Let A ∈ Cn×n satisfy AA∗ = A∗A. By Schur’s Lemma there exists a unitary U
such that A = UTU−1 with T upper triangular. From AA∗ = A∗A we obtain TT ∗ = T ∗T ,
and since T is upper triangular, Lemma 8.3.1 implies that T is diagonal.

Definition 8.3.1. A matrix A ∈ Cn×n is called normal if AA∗ = A∗A.

Example 8.3.1. i. Every diagonal matrix is normal.

ii. Every Hermitian matrix is normal.

iii. Every unitary matrix is normal.

iv. The matrix
(
1 1
0 2

)
is not normal, since

AA∗ =

(
2 2
2 4

)
6=
(
1 3
1 5

)
= A∗A.

Theorem 8.3.2. Let A ∈ Cn×n. The following are equivalent:

i. A is normal.

ii. There exists a unitary matrix U ∈ Cn×n such that U−1AU = ∆ is diagonal.

iii. There exists an orthonormal basis of Cn×1 consisting of eigenvectors of A.

Proof. • i. ⇔ ii. This was proved in Theorem 8.3.1.

• ii. ⇒ iii. Each column of U is an eigenvector of A. These columns form an orthonormal
basis of Cn×1 since U is unitary.

• iii. ⇒ ii. The proof is left as an exercise to the reader.

Lemma 8.3.2. Let B ∈ Cn×n satisfy 〈BX,X〉 = 0 for every X ∈ Cn×1. Then B = 0.
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Proof. Let X,Y ∈ Cn×1. Then

〈B(X + Y ), X + Y 〉 = 0

is equivalent to
〈BX,X〉+ 〈BX,Y 〉+ 〈BY,X〉+ 〈BY, Y 〉 = 0.

Hence
〈BX,Y 〉+ 〈BY,X〉 = 0. (8.1)

Replacing Y by iY gives
i〈BX,Y 〉+ i〈BY,X〉 = 0. (8.2)

Combining (8.1) and (8.2) yields 〈BX,Y 〉 = 0 for all X,Y . By Lemma 7.3.1(ii), it follows that
B = 0.

Warning! Lemma 8.3.2 does not hold in general if B ∈ Rn×n and 〈BX,X〉 = 0 for all
X ∈ Rn×1. For example, the 90◦ rotation matrix

B =

(
0 −1
1 0

)
satisfies the above property, but B 6= 0.

Lemma 8.3.3. Let T ∈ Cn×n be upper triangular such that every eigenvector of T is also an
eigenvector of T ∗. Then T is diagonal.

Proof. We prove the claim by induction on n.

• For n = 1 the statement is trivial.

• Inductive step. Let T be upper triangular and assume every eigenvector of T is also an
eigenvector of T ∗. Write

T =


t11 t12 · · · t1n
0
...
0

T1

 , T ∗ =


t11 0 · · · 0

t12
...
t1n

T ∗
1

 .

Since E1 is an eigenvector of T , by hypothesis it is also an eigenvector of T ∗. Therefore
(T ∗)(1) = λE1, hence

t12 = · · · = t1n = 0.
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Now let

X ′ =

x2...
xn


be an eigenvector of T1, and define

X =


0
x2
...
xn

 .

ThenX is an eigenvector of T , hence also of T ∗. It follows thatX ′ is an eigenvector of T ∗
1 ,

and by the induction hypothesis T1 is diagonal.

Theorem 8.3.3. Let A = (aij) ∈ Cn×n have eigenvalues λ1, . . . , λn. The following are equiva-
lent:

i. A is normal.

ii. There exists a unitary matrix U ∈ Cn×n such that U−1AU is diagonal.

iii. There exists an orthonormal basis of Cn×1 consisting of eigenvectors of A.

iv. |AX| = |A∗X| for every X ∈ Cn×1.

v. VA(λ) = VA∗(λ) for every eigenvalue λ of A.

vi. Every eigenvector of A is also an eigenvector of A∗.

vii.
∑
i,j

|aij |2 =
∑
i

|λi|2.

Proof. • The equivalences i., ii., iii. were proved in Theorem 8.3.2.

• i. ⇒ iv. If A is normal, then AA∗ = A∗A. For every X ∈ Cn×1:

〈(A∗A−AA∗)X,X〉 = 0

⇐⇒ 〈AX,AX〉 = 〈A∗X,A∗X〉
⇐⇒ |AX| = |A∗X|.
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• iv. ⇒ i. If |AX| = |A∗X| for every X , then

〈(A∗A−AA∗)X,X〉 = 0 for all X.

By Lemma 8.3.2, we get A∗A = AA∗, hence A is normal.

• i. ⇒ v. If A is normal, then B = A− λI is also normal. Using (iv), we have

|BX| = 0 ⇔ |B∗X| = 0 ⇒ VA(λ) = VA∗(λ).

• v. ⇒ i. By Schur’s Lemma there exists a unitaryU such that T = U−1AU is upper triangular.
If UX is an eigenvector of A, then X is an eigenvector of T , and by hypothesis also of T ∗.
By Lemma 8.3.3, T is diagonal, hence A is normal.

• i. ⇒ vi. From i. ⇒ v., and the inclusion of eigenspaces, the implication v. ⇒ vi. is immediate.

• vi. ⇒ i. Trivial from vi. ⇒ v. and v. ⇒ i.

• i. ⇒ vii. If A is normal, then
Tr(AA∗) =

∑
i,j

|aij |2.

Also, since A is unitarily diagonalizable, U−1AU = ∆, we get

Tr(AA∗) = Tr(∆∆∗) =
∑
i

|λi|2.

• vii. ⇒ i. If
∑

i,j |aij |2 =
∑

i |λi|2 and U−1AU = T is upper triangular, then∑
i,j

|aij |2 =
∑
i,j

|tij |2 =
∑
i

|λi|2 +
∑
i ̸=j

|tij |2 ⇒
∑
i ̸=j

|tij |2 = 0,

so T is diagonal and thus A is normal.

After completing the proof, let us make a couple of remarks about Theorem 8.3.3

i. Property (iv) says that ifA is normal, then |AX| = |A∗X|. ForX = Ei we get |A(i)| = |Ai|,
i.e. the ith column of A has the same length as the ith row of A, for each i = 1, . . . , n.

ii. In general, for every A ∈ Cn×n, if

χA(x) = (x− λ1) · · · (x− λn),

then
χA∗(x) = (x− λ1) · · · (x− λn).

However, when A is normal, we also have VA(λ) = VA∗(λ) for every eigenvalue λ of A.
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8.4 Exercises of Chapter 8.

Group A: 1, 2, 3, 4, 5, 6, 7, 15, 17, 19, 20, 21, 21, 23, 26
Group B: 8, 9, 10, 13, 14, 16, 18, 24, 25, 27
Group C: 11, 12

Exercise 8.1. Determine whether there exists a real orthogonal matrix P such that P−1AP is upper
triangular, where

A =

(
0 1
−1 2

)
.

If such a P exists, find one.

Exercise 8.2. Let

A =

 2 −1 1
−1 2 −1
1 −1 2

 ∈ R3×3.

Find an orthogonal P ∈ R3×3 such that P−1AP is diagonal.

Exercise 8.3. Let

A =

4 3 0
3 12 0
0 0 1

 ∈ R3×3

with eigenvalues 1, 3, 13.

a. Find an orthogonal U ∈ R3×3 such that U−1AU is diagonal.

b. Let f : R3 → R3 be linear with (f : â, â) = A, where â is an ordered basis of R3. Show that

f40 − 5f9 + 3f6 + 1R3 6= 0.

Exercise 8.4. Let A ∈ Cn×n, H = 1
2(A+A∗), and S = 1

2(A−A∗).

a. Show that H is Hermitian and that S∗ = −S.

b. Show that if every eigenvector ofH is also an eigenvector of S, then A is normal.
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Exercise 8.5. Show that there exists an orthonormal basis of C2×1 consisting of eigenvectors of(
1 i
a 1

)
∈ C2×2

if and only if |a| = 1.

Exercise 8.6. Show that ifA is normal, then the ith row ofA has the same length as the ith column
of A, for every i.

Exercise 8.7. Find all normal matrices A ∈ Cn×n such that Am = 0 for somem.

Exercise 8.8. Let A ∈ Cn×n be normal. Prove:

a. A is Hermitian⇔ every eigenvalue of A is real.

b. A is unitary⇔ every eigenvalue of A has modulus 1.

Exercise 8.9. a. If A ∈ Rn×n is symmetric and Ak = In, then A2 = In.

b. Find all symmetric A ∈ Rn×n such that A1821 = In.

c. If A ∈ Cn×n is Hermitian and unitary with Tr(A) = 0, then n is even.

d. If A ∈ Cn×n is Hermitian and unitary and has at least two distinct eigenvalues, find the
minimal polynomial of A.

Exercise 8.10. a. For every A ∈ Cn×n, the matrix A+A∗ − iIn is invertible.

b. If A,B ∈ Rn×n are symmetric and AB = BA, then AB + iIn is invertible.

c. Let A ∈ Cn×n.

i. Every eigenvalue of AA∗ is real and nonnegative.
ii. det(AA∗ + In) is a real and positive number.

Exercise 8.11. If A ∈ Cn×n is normal, then A∗ = f(A) for some f(x) ∈ C[x].

Exercise 8.12. Let A ∈ Cn×n and B = AA∗ −A∗A. Show that if AB = BA, then A is normal.
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Exercise 8.13. Find a symmetric A ∈ R3×3 with eigenvalues 1, 1,−1 such that the eigenspace
VA(1) is spanned by 1

1
1

 ,

2
2
1

 .

Is A unique?

Exercise 8.14. a. Let A ∈ R4×4 with dimVA(2) = dimVA(3) = 2 and 〈u, v〉 = 0 for every
u ∈ VA(2) and v ∈ VA(3). Show that A is symmetric.

b. LetA ∈ Rn×n satisfyAAt = AtA and assume χA(x) splits into linear factors inR[x]. Show
that A is symmetric.

Exercise 8.15. Let A ∈ Rn×n be symmetric and not of the form cIn, c ∈ R. FindmA(x) if

(A− 2In)
3(A− 3In)

4 = 0.

Exercise 8.16. If A ∈ Cn×n is normal and λ1, λ2 are distinct eigenvalues of A, then

VA(λ1) = VA(λ2)
⊥.

Exercise 8.17. Let A,B ∈ C4×4 be normal matrices with

χA(x) = (x− 1)2(x− 2)2, χB(x) = (x− 3)2(x− 4)2.

If VA(1) = VB(3), show that AB = BA.

Exercise 8.18. Let A ∈ Cn×n. Show that A is Hermitian if and only if 〈AX,X〉 ∈ R for every
X ∈ Cn×1.

Exercise 8.19. Give an example of A ∈ C3×3 such that there exists a basis of C3×1 consisting of
eigenvectors of A, but there is no orthonormal basis of C3×1 consisting of eigenvectors of A.

Exercise 8.20. Let B ∈ Cn×n satisfy

(B − 1
2In)

3(B − iIn)
4 = 0.



Konstantinos Bizanos Linear Algebra II

a. Show that if B is Hermitian, then B = 1
2In.

b. Show that if B is unitary, then B = iIn.

Exercise 8.21. Let u ∈ Rn×1 with |u| = 1, and set S = In − uut ∈ Rn×n.

a. Show that there exists an orthonormal basis of Rn×1 consisting of eigenvectors of S.

b. Show that Su = 0 and Sv = v for every v ∈ Rn×1 such that 〈v, u〉 = 0. Then find the
dimension of each eigenspace of S.

c. Give a geometric interpretation of S for n = 2, 3.

Exercise 8.22. Let a ∈ C and

A =

0 1 a
1 0 0
0 0 1

 ∈ C3×3.

a. Is it true that for every a there exists a unitary U ∈ C3×3 such that U−1AU is upper triangu-
lar?

b. Is it true that for a = 1 there exists a unitaryQ ∈ C3×3 such thatQ−1AQ is upper triangular?

c. Find all values of a such that there exists an orthonormal basis of C3×1 consisting of eigen-
vectors of A.

d. Let a = 0. Find a unitary U ∈ C3×3 such that U−1AU = diag(1,−1, 1).

Exercise 8.23. Let

A =

2 1 2
0 4 1
0 −2 1

 ∈ R3×3.

a. Find a basis for each eigenspace of A and determine whether A is diagonalizable.

b. Find two linearly independent eigenvectors of B = A12 − 8A7 + 5A5 + 4I3.

c. Determine whether there exists an ordered basis â = (a1, a2, a3) ofR3 such that (f : â, â) =
A, where f : R3 → R3 is the linear map defined by

f(a1) = 3a1 − 6a2, f(a2) = 3a1 − 8a2 + 6a3, f(a3) = 5a3.
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d. Find (if it exists) an invertible P ∈ R3×3 such that P−1AP is upper triangular.

e. Find (if it exists) an orthogonal U ∈ R3×3 such that U−1AU is upper triangular.

Exercise 8.24. Let

A =

 0 0 −3
−1 3 1
1 0 4

 ∈ R3×3.

a. Determine whether there exists an orthogonal P ∈ R3×3 such that P−1AP is upper triangu-
lar.

b. LetB = A1821−A3+I3. Find an invertibleQ ∈ R3×3 such thatQ−1AQ is upper triangular.

c. If f : R3 → R3 is linear with (f : â, â) = A, determine whether f3 − 3f − 18 · 1R3 is an
isomorphism.

Exercise 8.25. Let A ∈ Rn×n be symmetric. Consider the linear map

LA : Rn×1 → Rn×1, LA(X) = AX.

Show that
ker(LA) = (Im(LA))

⊥.

Exercise 8.26. Let A ∈ C3×3 satisfy A∗A = 4A.

a. Show that A is Hermitian.

b. Determine whether there exists an orthonormal basis of C3×1 consisting of eigenvectors of
A.

c. Show that if rank(A) = 1, then there exists a unitary U ∈ C3×3 such that U−1AU =
diag(4, 0, 0).

d. Determine whether 〈AX,AY 〉 = 〈X,Y 〉 for all X,Y ∈ C3×1.

Exercise 8.27. If T ∈ Cn×n is upper triangular and every eigenvector of T is also an eigenvector
of T t, then T is diagonal.
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Exercise 8.28 (Review exercise). Decide which of the following statements are true. In each case
give a proof or a counterexample. Let A ∈ Cn×n be Hermitian.

a. If A is unitary and every eigenvalue of A is positive, then A = In.

b. φ(A) is diagonalizable for every φ(x) ∈ C[x].

c. If Am = 0 for somem, then A = 0.

d. If every eigenvalue of A is nonnegative, then there exists a Hermitian B ∈ Cn×n with B2 =
A.
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