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PREFACE

These notes concern the undergraduate course Linear Algebra II. The content of the notes has been
based on the material taught in the undergraduate curriculum of the Department of Mathematics
of the National and Kapodistrian University of Athens. The notes constitute an aid for examined
(and non-examined) students; however, it must be stated that under no circumstances can these
notes replace any corresponding textbook of this subject area. At the end of each chapter there are
also practice exercises for the students, with which it is recommended to engage for the optimal
understanding of the course material.

After the completion of the theory, the reader can also find solved examination problems from
the examinations of the Department of Mathematics of the National and Kapodistrian University
of Athens, in order to become familiar with the type of exercises that are usually asked in the
examinations.

Finally, it is clear that the notes will contain typographical (and not only) errors, so if you notice
mistakes you may point them out at the e-mail: kbfgb@umsystem.edu

Konstantinos Bizanos,
Missouri,
December 26, 2025
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CHAPTER 1

SIMILAR MATRICES

1.1 Definition and properties

Definition 1.1.1. Let A, B € F"*". We will say that A and B are similar if there exists an
invertible matrix P such that B = P~1AP.,

Observation 1.1.1. Matrix similarity is an equivalence relation.
Proof. Let A, B,C € F**™,

i. Ais similar to itself, since: A = I;1AL,.

ii. If A and B are similar, then B and A are also similar. Indeed, there exists an invertible
P ¢ F™"*" such that

B=P'AP < PB=P(P 'AP) & A= PBP .

iii. If A and B are similar, and also B and C are similar, then A and C are similar. Indeed, there
exist invertible matrices P, ) such that

B=P AP

and

C=Q'BQ.

9
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Then:

C=Q 'BQ=Q (P 'AP)Q = (Q"'P HA(PQ) = (PQ)'A(PQ),

hence A and C are similar.

Example 1.1.1. Let the matrices

1=(i3) 2= (3" 5):

We observe that B = P~' AP, where

therefore the matrices A and B are similar.

Example 1.1.2. Let the matrices

() o= )

The matrices A and B are not similar. Indeed, if there existed an invertible matrix P such that:

B=P'AP =P ',P=P P =1,

we arrive at a contradiction.

Observation 1.1.2. If a matrix B is similar to I,,, then B = I,,.

Proof. The conclusion follows immediately from Example 1.1.2.

O

Reminder 1.1.1. Let A € F"*". The following three integers coincide (that is, they define the

rank of the matrix A, i.e. rank(A)):

(1) The maximum number of linearly independent columns.
(il) The maximum number of linearly independent rows.

(iii) The dim(Im(L4)), where L4 : F**1 — F"*1 X s AX,
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Proposition 1.1.1. Let A and B be similar. Then the following hold:

i. det(A) = det(B),
. trA=trd
iii. rank A = rank B.

Proof. i. Since A and B are similar, there exists an invertible matrix P such that B = P~ 1 AP.
Then:

detB = det(P'AP)

= det(P!) - det(A) - det(P)

_ dettP) - det(A) - det(P)

= detAd

ii. Since A is similar to B, there exists an invertible P such that
B =P 'AP

Then, from the property
trAB =tr BA

we have
ttB=tr (P 'AP) =tr (APP™!) =tr A.

iii. The matrices A and B are similar, hence they are also equivalent, so rank(A) = rank(B).

O]

Attention! The converse does not hold in general.

Example 1.1.3. For example, the matrices

=) m=60)

are not similar, even though they have equal determinant and equal rank: det(A) = det(B) and
rank(A) = rank(B).
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1.2 Relation to linear maps

Question. How do similar matrices appear in nature?

An informal answer is that similar matrices arise from changes of bases of linear maps. The precise
answer is given via the following theorem. But first let us recall some useful tools.

Reminder 1:2'1‘ i. Let @ be a basis of V, and let P € F™*™ be invertible. Then there exists a
basis b of V' with

Pz(lV:B,d).

ii. Leta, b be bases of V. Then we have

(1V : B,d>_1 = <1V:&,B>.

iii. Let f : U — V, g : V — W be linear maps and let a, I;,é be ordered bases of U, V, W
respectively. Then:

?l;)'

Q>

(gofrac)=(g:b¢)(f:

Proof. Indicatively we will prove (i). Since
a=(ay,...,ap)
is a basis of V, there exists a linear map f : V — V with
P=(f:a,a).
Since P is invertible, f is an isomorphism, hence

flar), ..., f(an)

form a basis of V. Set R
b= (f(al)a cee 7f(an))

and from the definition of the matrix of a linear map we have

P:(1V:6,a).
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Theorem 1.2.1. Let f : V — V be a linear map, let © be an ordered basis of V and let A € F™*"
with
A= (f:0,0).

Let B € F™*™, Then the following are equivalent:

i. The matrices A and B are similar.

ii. There exists an ordered basis w of V' such that B = (f : w, w).

Proof. * i. = ii.: Let P be invertible with
B=P AP

Then, by Reminder 1.2, there exists an ordered basis w such that

Then:

e ii. = 1i.: Let
B=(f:w,0)
for some ordered basis w of V. We will show that A and B are similar. Set P = (1y : w, 0).

Then:
B=(f:,w) =1y : 0,w) - (f : 0,0) - (1y : w,0) = P LAP,

hence the matrices A and B are similar.
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1.3 Chapter 1 Exercises.

Group A : 1,2,4,5,6,7 Group B:3

Exercise 1.1. Let A € [Fand A € F™*", Show that if A is similar to AL, then A = AL,.

Exercise 1.2. Let A, B € F"*™,

a. If the matrices A + All,,, B + AL, are similar for some A € [, show that A, B are similar.

b. Is it true that if A2, B? are similar, then A, B are similar;

Exercise 1.3. Let A, B € F™*" be similar matrices. Prove the following equalities.

a. det A = det B.
b. rank A = rank B.

c. TrA="TrB.

Exercise 1.4. Show that for every a € R,

th ri 1 2 1 —a  simil
a. the matrices 3 4)la 21 are not similar.

b. the matrices L —a ,— L —a are similar.
a —1 a —1

Exercise 1.5. A linear map is given f : R? — R?, f(z,y) = (v + 2y, 2z + y).

a. Compute the matrices (f : é,€é) and (f : a,a), where a is the ordered basis (ai, az), with
air = (1) *1)7612 = (17 1)

b. Find an invertible P with (f : @,a) = P~1(f : é,é)P and an invertible ) with
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Exercise 1.6. A linear map is given f : R? — R? with formula

flz,y,2) = (x +y+22,2x + 2y + 42,3z + 3y + 62).

a. Show that the set {(1,1,1), (1,1,0), (1,0,0)} is a basis of R3.
b. Compute the matrix (f : a,a), wherea = {(1,1,1),(1,1,0),(1,0,0)} and P invertible with
(f:a,a) =P~ Y(f:¢ée)P.

1 20
c. Is it true that there exists an ordered basis b of R® such that (f : b,0) = [1 1 1] 2
2 31

Exercise 1.7. Let A = <(1) 1) and R?2*%2 — R?*2 f(X) = AX — X A.

a. Show that the map f is linear.

b. After computing the matrix B = (f : E, E), where £ = {E11, E12, Ea1, E22} is the usual
ordered basis of R?*2, show that dimker f = dimImf = 2 and B3 = 0.

c. Is it true that there exists an ordered basis b of R?, such that (f : b, b) = diag(1, —1,0,0) ?

Exercise 1.8. Examine which of the following statements are true. In each case justify your answer
with a proof or counterexample. Let A, B € F"*" be similar matrices.

a. If A =1, then B =1,.

b. If B = —A € F3*3, then A and B are not invertible.

c. The matrices (A A> , <B B> € F2%27 are similar.

d. The matrices <A C’) , (B C> e Fntm)x(nt+m) gre similar, for every C' € Fm*™,
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CHAPTER 2

POLYNOMIALS

2.1 Divisibility

First, by [F[x] we denote the set of polynomials with coefficients from F.
Every a(z) € F[z] with a(z) # 0 is written uniquely in the form
a(z) = apz” + -+ a1z + ap, an #0.

With the previous notation, n = deg a(x) is called the degree of a(z), while a,, is called the leading
coefficient of a(x).

Observation 2.1.1.  i. deg(a(x) + b(x)) < max {dega(x),degb(x)},
ii. deg(a™(x)) =m-dega(x).

We consider the following operations on Fz] :
a(z) +b(x), afz)-b(x), A-a(z)
with a(z),b(z) € F[z] and A € F.

)
Thus, F[x] becomes an F-vector space with respect to addition and scalar multiplication.

Example 2.1.1. Let the polynomials

a(z) = apmaz™ + - + a1x + ag

17
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and
b(iL’) :bn$n+"'+b1$+bo
in F[x]. Then, for the polynomial ¢(z) = a(x) - b(x) we have:

Cj = E Qj—t * bt.

0<t

Definition 2.1.1. Let a(z),b(x) € F[z]. We will say that a(x) divides b(z) in F[z] if there exists
¢(x) € F[z] such that

and we denote it by
a(x) | b(z).
Example 2.1.2.  i. We have that 22 + 2 4+ 1 | 2% — 1, since
?—1=(2*+z+1)(z—1).
ii. For every polynomial a(z) € F[x] we have a(z) | 0.
iii. In general, 0 | a(zx) if and only if a(x) = 0.

Observation 2.1.2. If a(z) € F[x] divides two polynomials b(x), c(x) € F[z], then it also divides
every polynomial of the form

f(@)b(x) + g(x)c(z)
for every f(x),g(x) € Flz].

Proof. We have that a(x) | b(x), that is, there exists a polynomial ¢; (x) € F[x] such that:
b(x) = a(@)a (@)

Similarly, there exists a polynomial ¢2(x) € F[x] such that:
(&) = al@)aa(a).

Then we obtain:

f@)b(x) +g(z)e(z) = fl@)a(z)q(r) + g(r)a(z)g(z)

= a(z)[f(#)q () + g(x)q2(z)] -
Thus, we conclude that
a(@) | f(z)b(z) + g(z)c(z),
for every f(x),g(x) € Flz]. O
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Theorem 2.1.1 (Euclidean Division). Let a(x),b(z) € Flx]| with a(x) # 0. Then there exist
unique g(x),r(x) € F[x] such that

with 7(z) = 0 or degr(x) < dega(x).

Example 2.1.3. We consider the polynomials a(x) = 22 + 1 and b(z) = 2% — 22 + 1. Then we
have the following:

b(x) =x-a(x)+ (—=3z+1).
Application 2.1.1. Let f(z) € F[z] and ¢ € F. Then

ceF isarootof f(z) <= x—c|f(z).

Proof. Suppose that x — ¢ | f(x), then there exists g(x) € F[x] such that
f(z) = (z—c)-g(x) = flc) = (¢ = c)g(c) = 0.
Conversely, by Theorem 2.1.1 there exist ¢(z), r(z) € F[z] such that:
f@)=(z—c)g(z)+r(x), r(x) =0 or degr(x)<deg(x—c).
Hence deg r(z) = 0 with
£(e) = (c—c)g(c) +7(c) = 0 & r(c) = 0.

That is, 7(z) = 0 and
f(@) = (x = c)q(x).
O

Definition 2.1.2. Let f(x),g(x) € F[z], not both zero. A d(z) € F[z] is called the greatest
common divisor of f(z), g(x) if the following hold:

i. d(z) is monic (the leading coefficient of d(x) equals 1).

ii. d(x) divides both f(z) and g(x).

iii. If there is another common divisor d’'(z) € F[z] with d'(z) | f(x) and d'(z) | g(z), then
d'(x) | d(z).
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Theorem 2.1.2. Let f(z), g(x) € F[x], not both zero.

i. There exists a unique greatest common divisor of f(z), g(z).

ii. Letd(x) = ged(f(z),g(x)).

Then there exist a(z), b(z) € F[z] such that:

d(x) = f(x) - a(x) + g(x) - b(x).

Definition 2.1.3. The polynomials f(z), g(z) € Flx] are called relatively prime if:
ged(f(z), g(x)) = 1.

Example 2.1.4. For gcd(x — a,z — b) we have:

1, ifa#b
ged(z —a,x — b) =

r—a, ifa=0b
More generally, if p(z) € F[x] is an irreducible polynomial and f(z) € F[x], then

p(z), p(@)|f(z)
ged(f(x), p(x)) = :
Lo ple) ff(z)

Application 2.1.2. Let a(z),b(z) € Flx] be relatively prime. Then:

i. Ifa(z) | b(x) - e(x) with ¢(z) € Flz], then a(zx) | c(z).
ii. Ifa(z) | c(x) and b(z) | ¢(x), then a(x) - b(x) | c(z).

Proof: 1. Assume that ged(a(x),b(x)) = 1. By Theorem 2.1.2, there exist a’(z), b (z) € F[z]
such that:

1 =d(x)a(x) + b'(x)b(x) (2.1)
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By assumption, a(z) | b(x)c(x), that is, there exists ¢(x) € F[x] such that

Hence:

so a(x) | c(x).

ii. From relation (2.1) and since a(z) | ¢(x) and b(z) | ¢(x), it follows that a(z)b(z) | c(x).

2.2 Irreducible Polynomials
Definition 2.2.1. A polynomial p(z) € F[z] of positive degree is called irreducible in F[z] if there
do not exist a(x), b(x) € F[z] such that:

a(z)b(z) =p(xr) and dega(r) < degp(x), degh(r) < degp(x).

Example 2.2.1. 1. Every p(x) € F[x] with degp(x) = 1 is irreducible.

2. The polynomial 22 + 1 € R[] is irreducible, while 2% + 1 € C|x] is not, since

224 1= (x—i)(z+1).

Observation 2.2.1. Let p(x) € F|[x] be irreducible and monic. Then:

1, if p(x) 1 q(z),
ged(p(z), q(x)) =
p(x), ifp(x)|q(x).

Proposition 2.2.1. Let f(x) € C[z]. If z € C is aroot of f(x), then its conjugate Z is also a root

of f(x). !

'In C: For every z € C there exist unique a,b € R such that z = a + bi. That is, C is a vector space over R with
basis {1, 4} and dimg C = 2.
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Question 2.2.1. Which are the irreducible polynomials in R[z] and in C[z]?

i. The irreducible polynomials of C[z] are the linear polynomials. >
ii. The irreducible polynomials in R[z| are the linear ones or the quadratic ones with A < 0.

Theorem 2.2.1. Every polynomial f(x) of positive degree can be written uniquely as follows:
f(@) = c-pr*(z) - pie (@),

where ¢ € C and the p;(x) are monic, pairwise distinct, irreducible polynomials.

Example 2.2.2. 1. Let f(z) = 2 — 1 € F[z]. Depending on the field IF:

« fF =R, thenz? — 1= (z — 1)(2® +z + 1).
e IfF = C, then:

2 —1=(x-1) (m—_l—;\/gl) (x_—1—2\/§z>

2. For g(z) = 2* + 1, we observe that:

g(z) = <$2—\/§x+1> <$2+\/§x+1>.

Proposition 2.2.2. Let

f(@) = cipr(@)™ - -ps(@)™, g(x) = capr ()™ - - ps(2)™,

where the p;(z) are monic, irreducible, pairwise distinct, and 0 < m;, n;. Define:
d; = min{m;,n;}, d(x)= pl(av)d1 . -ps(:):)ds.

Then:
d(z) = ged{ f(z), g(z)}-

Example 2.2.3. In R[z], consider:
f@) =3 =5)" 0"+ +1)°% g@)=—(z-5z -7 " +2+ 1"

Then:
ged(f(2), g(x)) = (x = 5)*(a? + 2+ 1)°.

2This is equivalent to the Fundamental Theorem of Algebra: Every polynomial of positive degree with complex
coefficients has a root in C.
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Definition 2.2.2. Let a € F be aroot of f(x) € F[x]. The greatest integer m such that (x — a)™ |
f () is called the multiplicity of the root a in f(x). It is denoted by m = 1 (a).
Example 2.2.4. For F = R and

fl@)=(z—=2)°(@@-3)(a* + 2 +1),

we have:

Definition 2.2.3. A root a of f(x) is called simple if its multiplicity equals 1. Otherwise, the root
is called multiple.

Proposition 2.2.3. Let a € F be a root of f(z) € F[z]. Then a is a multiple root of f(z) if and
only if it is also a root of the derivative f'(x).

Proof. If a is a multiple root, then (x — a)? | f(x), that is, there exists g(z) € F[z] such that:
f@) = (z = a)’g(z) = f'(z) = 2(z — a)g(z) + (z — a)’g (),

so f'(a) = 0.

Conversely, let f(a) = f'(a) = 0. Since f(a) = 0, there exists g(z) € Flx] with f(z) =

(z —a)g(z). Then:

f'() = (x = a)g'(z) + g(x) = f'(a) = g(a) =0 = (z — a) | g(2),

hence f(z) = (z — a)?h(z) for some h(z), i.e. a is a multiple root. O

Corollary 2.2.1. Let f(z) € Flz]. If ged(f(z), f'(z)) = 1, then every root of f(x) is simple.

Proof. The proof is immediate via Proposition 2.2.3. O
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2.3 Polynomials and matrices

Definition 2.3.1. Let f(z) = fz™ + -+ fiz + fo € Flz] and A € F**". By f(A) we denote
the matrix:

fA) = fmA™ + -+ LA+ foln.
Example 2.3.1. If f(z) = =3z + 5 € R[z], then:

f(A) = —-3A+5I,, foreveryAeF"*",

Observation 2.3.1. Let f(x),g(z) € F[z], and let h(z) = f(x) + g(x), k(z) = f(x)g(z). Then,
for every A € F"*™ we have:

WA) = f(A) +9(A), r(A) = f(A)g(A).

Example 2.3.2. 1. Consider the polynomials f(z) = 22 — z and g(x) = = + 1 in R[z]. Then
k(z) = f(z) - g(x) = 2° — z, hence:

k(A) = f(A)-g(A) = A3 —A=AA-1,)(A+I,).

2. Ifb(x) = q(x) - a(x) + r(z), then b(A) = q(A) - a(A) + r(A).

2.4 Polynomials and linear maps

Definition 2.4.1. Let f : V — V be a linear map and let a(x) = apa™ + -+ - + a1z + ap € Flz].
We define:
a(f): V=V, a(f)=anf"+ - +af+aoly.

Observation 2.4.1. Let a(z),b(x) € Fz], with ¢(z) = a(z) + b(z), d(z) = a(x) - b(z) and
f:V — V alinear map. Then:

c(f) = al(f) +b(f), d(f) = a(f)ob(f).

Example 2.4.1. If P(z) = 22 — 1 € Fx], then:

P(fy=f -1y =(f—1y)o(f+1v).
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Proposition 2.4.1. Let f : V — V be a linear map, let 0 be an ordered basis of V and let A = (f :
0,0). Then, for every p(z) € F[z], we have:

Proof.
((f) :9,0) = (emf™ + -+ o1f +@olv : 0,0)
:gom(fm:f),f))—l—---—i—gol(f:@,@)—l—cpo(lv : A,IAJ)
= omA™ + -+ 1A+ ol = p(A).
O
Example 2.4.2. i. Consider the linear map f : F3 — F? with matrix:
-2 0 1
A=(f:0,0)=1-1 1 0
0 1 -1
Then if g = f2 + 3f + 1ps, we have:
1 1 4
(g:0,0)=A*+3A+1,=[-6 5 0
-1 3 -1

ii. Let f : V — V be a linear map and let ¢(x) € F[x] such that ¢(f) = 0. If the constant term
o # 0, then f is an isomorphism.

Proof. Let o(z) = pma™ + -+ -+ p12 + ¢o. Then:

o(f) =emf™ +--+o1f +poly =0.
Move the constant term:

1 m ]‘ m—
ly=——(pmf" + -+ orf) = [ (pnf" "+ +p1)| o f.
40 ®0

Hence f is left- and right-invertible, i.e. an isomorphism. O
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2.5 Chapter 2 Exercises.

Group A : 1,2,3,5,6,7,8,9,11,15 Group B : 4,10,12,13,14,16

Exercise 2.1. Let f(z),p(z) € F[z] where p(x) is monic and irreducible. Show that

ged(f(z),p(x)) =1 or ged(f(z),p(x)) = p(z).
Exercise 2.2. Find ged (22 + 1, 2291% 4 1) and ged (2% + 1,220 — 1).

Exercise 2.3.  a. Let f(x) € F[z] and a,b € F with a # b. Find the remainder of the division
of f(z) by (z — a)(z — b).

b. Find all values of ¢, d € R such that (z — 1)(z — 2)|2'% + c2® + dz + 1.

c. Find all values of ¢, d € R such that (z — 1)%[2'% + c2® + dz + 1.

Exercise 2.4. The polynomials f(z) = 223 — 322 4+ 62 + 5 and g(z) = 23 + az?® + 2 + 1 are
given, where a € R.

a. Find the roots in C of f(z).

b. For which values of a do f(z), g(z) have a common real root?

c. Find the factorization of g(z) into a product of monic irreducibles in R[z] if one of its roots

in Cis .

Exercise 2.5. Let f(z), g(z) € R[z], where f(z) = 2° — 2* — 2?2 + z, g(z) = 2® +  — 6. Find
their gcd and lem.

Exercise 2.6. Let f(x), g(x) € R[z], where f(z) = 2® — 22 + 2 — 1, g(z) = 2®> + 2 — 2. Find

the matrices A € R™*™ such that f(A) = g(A) = 0.

Exercise 2.7. Let f(z), g(z) € F[z] with ged(f(z), g(x)) = 1.

a. Show that there isno A € F™*"™ with f(A) = g(A) = 0.
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b. Isittrue that forevery h(z) € F[z] there exista(x), b(z) € F[z|suchthath(z) = a(x)f(z)+
b(x)g(x)?

Exercise 2.8. Show that every root in C of f(x) is simple in the cases

a. f(x)=2a"—-1,

b. f(r)=a"+xz+ 1.

2 0 1

Exercise 2.9. Let f: 3 — [F3 be the linear map with (f : a,a) = | -1 1 0 |, where aisan
0 1 -1

ordered basis of F? and () = 2% + 3z + 1 € F[z]. Find the matrix (¢(f): a, a).

Exercise 2.10. Let A € F"*" and ¢(x) € F[x]. Show the following.

a. If A is diagonal, A = diag(ay,- - ,ay,), then p(A) = diag(p(a1), -, p(an)).

Ay
b. If A is of the form A = , where A; € F™*™ and ny + - - -ni = n ("block
Ay
¢(A1)
diagonal’), then p(A) = . . (Note. We mean that the invisible entries
©(Ag)
are 0.)
ax * p(ar) *
c. If A is upper triangular, A = , then p(A) =
an p(an)
A1 *
d. If A is of the form A = , where A; € F"*™ and ny + - --ni = n ("block
Ay,

p(A1) *
upper triangular’), then p(A) = :

o(Ag)
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Exercise 2.11. Let A € Fnx™,

a. Let o(x) € F[x] with nonzero constant term and ¢(A) = 0. Show that A is invertible.

b. Let A% = 0. Show that the matrix ¢ (A) is invertible, where p(z) = 2* — 2% + 22 — 2 + 1.

Exercise 2.12. The conclusion in question b. is called Lagrange’s Theorem. For F = R, it says
that through n distinct points of the plane there passes a unique polynomial curve of degree at most
n — 1, analogous to the fact that through two distinct points of the plane there passes a unique line.
Let Ay, ---, A, € F be distinct. Consider the vector space F,,_1[z] of all polynomials of degree at
most n — 1 and the map

frFnafe] = F f(o(@) = (9(A), -+ 5 9(An))-

a. Show that the map f is linear, one-to-one, and onto.

b. Show that for every a1, - - - , a, € F there exists a unique p(z) € F,,_;[x] such that p(\;) =
ai, - 7¢()‘n) = Qp.

c. Find a polynomial ¢(x) such that p(1) = 2, ¢(2) = 1,p(-1) = 1.

n
d. Show that the p(x) of subquestion b. is given by the relation ¢ = ) a;p;(x), where
j=1

- T — A
k=1 kg 0 Tk

Exercise 2.13. Let A € R"*"™ and B = (61 {Z) € R2nx2n

a. Show that f(B) = <
f(@).
b. Show that if (A4 — I,,)?°13(A — 2I,,)?°™ = 0, then (B — I3,)*"'4(B — 215,)*°1® = 0.

) for every f(x) € R[z], where f/(x) is the derivative of

Exercise 2.14. Show that for every A € F"*™ there exists a nonzero p(z) € F[z] of degree at
most n? such that ¢(A) = 0.
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Exercise 2.15. Let A, B, P € F"*" such that B = P~1AP. Show that ¢(B) = P~1p(A)P for
every p(z) € Flz].

Exercise 2.16. Letaq, - ,a, € R. Set

e; = E A, Ay - Qpyy 0 =1, n.
1<t1<--<t;<n

For example, if n = 3, then
€1 = a1 +ag + as, ea = ajas + ajas + asas3, €3 = a1a203.

Show that ife; > O foreachi=1,--- ,n,thena; > 0 foreachi=1,---n

Exercise 2.17. Examine which of the following statements are true. In each case justify your answer
with a proof or counterexample. Let f(x), g(z), h(z) € F[z].

a. If f(2)|g(x)h(z), then f(z)|g(x) or f(z)|h(z)
b. Let f(x) be irreducible. If f(x)|g(z)h(x), then f(z)|g(z) or f(x)|h(z)
c. If f()|h(x) and g(x)|h(x), then f(z)g(z)|h(z)
d. I f(x)|h(x), g(x)|h(x) and ged(f(x), g(x)) = 1, then f(x)g(z)|h(z)

e. Let A e T If f(A) = g(A) = 0, then f(x), g(x) are not relatively prime.
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CHAPTER 3

EIGENVALUES AND EIGENVECTORS

3.1 [Eigenvalues, eigenvectors and eigenspaces of a matrix

3.1.1 Eigenvalues and eigenvectors of a matrix

Definition 3.1.1. Let A € F"*" X\ € Fand X € F**! X = 0. If the relation
AX = )AX, 3.1
holds, we say that \ is an eigenvalue of A and X is a corresponding eigenvector of A associated

with the eigenvalue .

Example 3.1.1. Let

1 -2 2 2 1 1
A=|0 -3 4|, x=|1], Y=|2|, z=[1
0 -2 3 1 1 2

i. Wehave AX = X, hence 1 is an eigenvalue of A and X is a corresponding eigenvector.
ii. We have AY = —Y, hence —1 is an eigenvalue of A and Y is an eigenvector.

31
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3
iii. Wehave AZ = | 5 |. Thereisno A € R such that \Z = AZ, hence Z is not an eigenvector
4

of A.

Example 3.1.2. Let the matrix

_ 13 2%X2
A_<4 2>€]R .

We will find the eigenvalues and eigenvectors of A.

Proof. Let X = <§> € R?*! and )\ € R. From relation (3.1) we have:

x4+ 3y =X\ (I1-XNz+3y=0
AX =2X & (B3 (M) o
- dr+2y)  \\y
dr + 2y = Ay dr+(2-XNy=0

The system has a nontrivial solution if and only if:
det<ll)\ 2?/\> =0=>(1-XN)(2-XN)-12=X-3\+10=0.

Hence the eigenvalues of A are:
A=5 and \=-2.

Now we find the corresponding eigenvectors:

i. For A = —2: From the system we get 3x + 3y = 0 = y = —x, hence:

ren={(5)ees-((4))

ii. For A\ =5: From -4z +3y=0=y = %x, hence:

o-{(i) =<} ()
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Example 3.1.3. We consider the matrix

_ 0 1 2% 2
A_<_1 O)EF .

We distinguish the following cases:

a. Assume that A € RZ2*2 andlet A € Rand X = (;j) € R?*1 Then:

e —y =
AX:AX@<y>:</\$>:> z—y=0
- Ay x+Ay=0
The determinant of the system is:

det(i\ _)\1>:)\2+17$0, for every A € R.

Hence, there are no eigenvalues and eigenvectors of A over R.

b. If A € C*>*2,thenfor A € C and X = <§) € C?*! we have:

A —y=0
AX:AX<:><?J)= (A“’);» Ty
- Ay x+Ay=0
The system has a nonzero solution if and only if:

det(/l\ _)\1> =N 4+1=0=A=ior\=—i.

i. For the eigenvalue \ = ¢, from ix — y = 0 = y = ix. Hence:

s-tweeo-{(2)}-(0)

is the set of eigenvectors of A corresponding to the eigenvalue A = 1.

ii. For the eigenvalue A = —i, from —ix — y = 0 = y = —iz. Hence:

V(—i) = {X e C* |y = iz} = {(j@)} B <(—11>>

is the set of eigenvectors of A corresponding to the eigenvalue A = —i.
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Properties 3.1.1. Let A € F™*" )\ € F. The following are equivalent:

i. Aisan eigenvalue of A.
ii. There exists X € F™*! with X # 0 such that (4 — A\I,) X = 0.
iii. det(A — AL,) = 0.

Proof. * i. = ii.: By definition, there exists X # 0 such that
AX = 20X < (A-),)X =0.
* ii. = iii.: The implication follows from the well-known proposition:
If B € F™" and BX = 0 has a nonzero solution, then det B = 0.
e iii. = i.: If det(A — AL,) = 0, then there exists X # 0 with
(A= MA,)X =0= AX = )X,
hence A is an eigenvalue.

O]

Corollary 3.1.1. i. A matrix A € F"*" is invertible if and only if 0 is not an eigenvalue of A.
ii. If A is upper or lower triangular with diagonal entries a1, . . ., a,, then:
n
det(A — AL,) =0« [](a;i — A) = 0.
i=1
That is, A is an eigenvalue of A if and only if A = a; for some 3.

iii. \is an eigenvalue of A if and only if it is an eigenvalue of A’.

Proof. i. The proof is left as an exercise to the reader.
ii. The proof is left as an exercise to the reader.

iii. From:
det(A — AL,) = det ((4 — AL,)") = det(A" — AL,),

we conclude that )\ is an eigenvalue of A’
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Example 3.1.4. We observe that 2 is an eigenvalue of the matrix:
0 2 3
A=1(2 0 3],
1 0 2

since:

-2 2 3
det(A—2I3) =det| 2 -2 3| =0.
1 0 0
Also, 0 is not an eigenvalue of A because:
det A =6 #0.

3.1.2 Eigenspaces of a matrix

Definition 3.1.2. Let A € F™*™ and let A be an eigenvalue of A. The eigenspace of A correspond-
ing to A is the set:
Va(A) ={X e "' | AX = )X }.

Observation 3.1.1. i. Va()\) is the set of eigenvectors of A corresponding to A, together with
the zero vector.

ii. V4()) is a subspace of F"*1, since it is the solution set of the homogeneous system
(A—M,)X =0.
Theorem 3.1.1. Let A € F™*™ and let A € FF be an eigenvalue of A. Then:

dim V4 (A\) = n — rank(A — ALL,).

Proof. Consider the linear map
Lp:F"! 5 F> Lp(X) = BX,

where
B=A-)L,.

Then:

i. dimker L5 4 dimImLp = n (Dimension Theorem),
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ii. dimIm£Lpg = rankB.

Since ker L = V4 (), we obtain:

dim V4(\) = dimker Lp = n — rank(A — AL,).

3.1.3 Properties of eigenspaces

Proposition 3.1.1. Let \q,. .., \ be distinct eigenvalues of the matrix A and X1, ..., X, € F*x!
with X; € V4 (\;) foreachi € {1,...,s}. If

X1+"'+X8:07
then
X1=Xo=---=X,=0.
Proof. We will use induction on s.
- Base case: For s = 1, clearly X; = 0.

- Inductive step: Assume the statement holds for s — 1. Suppose X7 + - - - + X = 0 with each
X; € Va(\;). Then:

AXi+- + AX = A(X + -+ X)) = A0) =0,

hence:
MX1 4+ A X =0.

Subtract the relation A (X7 + -+ + X) = 0:

(A X1+ A Xs) = M( X+ + X) =0

<~ ()\2—)\1)X2+"'+(/\5—)\1)X5:0.

For i > 2, we have
(A = A1) X € Va(\)

and since the eigenvalues are distinct,

Ai;«éM:)\i—)\l#O.
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Therefore, by the inductive hypothesis we get
Xo=---=Xs=0

and from the original assumption it follows that X; = 0. O

Corollary 3.1.2. Eigenvectors of a matrix A corresponding to distinct eigenvalues are linearly
independent.

Proof. Let X1,..., X, be eigenvectors of A corresponding to distinct eigenvalues Aq, ..., Ag, re-
spectively. If
miX1+--+msXs=0

for some m; € I, then by Proposition 3.1.1 we have
mz-Xi =0
that is m; = 0, since X; # 0. Hence the vectors are linearly independent. O

Application 3.1.1. Let X, Y be eigenvectors of the matrix A corresponding to different eigenval-
ues. Show that a X + bY is not an eigenvector of A, if ab # 0.

Proof. Assume AX = rX and AY = mY with r £ m, and that a X + bY is an eigenvector for
some eigenvalue A. Then:

A(aX +bY) = AMaX +bY)

= arX +bmY = a\X +b\Y

= (ar —aX)X + (bm —bN)Y = 0.

Since X, Y are eigenvectors with distinct eigenvalues, they are linearly independent (by Corollary
3.1.2), hence the corresponding coefficients must be zero:

ar—aX=0=>A=r

bm—-—bW=0=>A=m=r=m

a contradiction. Therefore a X + bY is not an eigenvector if ab # 0. O
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Proposition 3.1.2. Let A € F"*", p(z) € F[z], let A be an eigenvalue of A and X a corresponding

eigenvector. Then ¢(\) is an eigenvalue of the matrix p(A) and X is a corresponding eigenvector.
That is:

Va(A) € Vi (e(N)-

Proof. By assumption we have AX = AX. Note:

A%2X = A(AX) = AOX) = MAX) = ’X.
We generalize by induction on the exponent.
Claim: For every m € N we have: A X = \"X.
Proof of Claim:

* Base case: For m = 1, it holds immediately: AX = A X.

* Step: Assume A™X = A" X. Then:
ALY — A(A™X) = AN™X) = AN (AX) = A" AX = \HLX,

Hence the claim holds for every m € N.

Now let ¢(z) = @ma™ + - -+ + ¢g. Then:

P(A)X = (pmA™ + -+ poln) X = (pmA™ + -+ +90) X = (M) X.
Since X # 0, it is an eigenvector of ¢(A) for the eigenvalue @(A). O

Example 3.1.5. Attention! The inclusion is not equality in general. If

=0 5)

then:
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But if o(z) = 22, then

SO(A) = A2 = I?a
and:
1 0 2x1
= (o) (1)) =
Hence
Va(1) S V(1)
Example 3.1.6. a. If <;> is an eigenvector of a matrix A for eigenvalue —1, then it is also an

eigenvector of the matrix A'82! 4 10A, with eigenvalue:

(=D 4 10(=1) = =1 + (=10) = —11.

b. If A € F2*2 has eigenvalues 2 and —3, then for (x) = 2% + 5, the eigenvalues of p(A) are:

e(2)=224+5=9, ©(-3)=9+5=14.

c. If B is a matrix with eigenvalues —1 and 1, then the matrix B2 has the unique eigenvalue 1,
since:

3.2 Eigenvalues, eigenvectors and linear maps

Definition 3.2.1. Let f: V' — V be a linear map, A € Fand v € V with v # 0. If
f(v) = v,
then ) is called an eigenvalue of f and v is an eigenvector of f corresponding to the eigenvalue A.

If X\ is an eigenvalue of f, then the corresponding eigenspace of f is the set:

Vi(A) ={ve V| f(v) = v}



Konstantinos Bizanos Linear Algebra II

Observation 3.2.1. If f: V — V is a linear map and A is an eigenvalue of it, then:

Vi(\) = ker(f = A-1y) < V.

Proposition 3.2.1. Let f: V' — V be alinear map. If ¢ is any ordered basis of V and A = (f: 0, 0),
then:
dimVy(A) = dimV — dimIm(f — Aly) = dimV — rank(A4 — AL,).

Example 3.2.1. Consider the linear map f: R? — R3, f(x,y,2) = (0,0, + y). Find a basis of
each eigenspace.
Proof. We look for (z,y, 2) € R? such that:

flz,y,2) = Nz,y,2), AeR.

From:
0,0,z +y) = (A\z, Ay, A2)

we get the system:

Az =0
Ay =20
Az=x+y

The system has a nonzero solution if and only if:

A0 O
det{0 X 0 |=0&A=0.
1 1 =X
Hence, from the first two equations we have * = —y. Therefore:

Vi(0) = {(z,—2,2) € R* | 2,2 € R} = ((1,-1,0),(0,0,1)).

Theset {(1,—1,0), (0,0, 1)} is linearly independent, hence it is a basis of the eigenspace V(0).
0

Attention to this specific example!
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Example 3.2.2. Let V = Ro[z] and f: Ra[z] — Ra[z], f(¢(z)) = ¢(z) + ¢'(z) be a linear map.
Find a basis for each eigenspace of f.

Proof. Let o(z) = az? + bx + ¢ € Ry[z]. Then:
flp(x) = (x) + ¢ (x) = ax® + bx + ¢ + 2ax + b = az® + (2a + b)x + (b + ¢).
If f(¢(z)) = A - @(x), then:

az’ + (2a + b)z + (b + ¢) = arz? + bAz + cA.

Thus we get the system:
(a(1—X) =0

2a—b(1—\) =0

(b+c(1-=X)=0

The system has a nonzero solution if and only if:

1—-A 0 0
det 2 1-A 0 =0eA=1
0 1 1—-A

For the eigenvalue A = 1 wehave a = b = 0, hence V(1) = (1) and the basis of the eigenspace
is {1}. O

Proposition 3.2.2. Let f: V — V be a linear map and A = (f: a, ) with respect to some basis a
of V,and A € F. Then:

1. i. A is an eigenvalue of f if and only if it is an eigenvalue of A.
2. ii. Ifv € V, then v € V() if and only if [v]; € Va(A).

3. iii. The set {v1, ..., vy} is a basis of V() if and only if

{[vilas - - - [vmla}
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lis a basis of V4 ().

Proof. i. Let A be an eigenvalue of f. Then there exists v # 0 such that
F0) =X = (f = ALy)(v) =0,
that is, f — A1y is not invertible, hence A — All, is not invertible, i.e.
det(A — AL,) =0,
s0 A is an eigenvalue of A.

ii. We have
veEViA) & f(v) = v & Ay = Auls € [v]a € Va(N).

iii. The map v — [v]; is an isomorphism g: V' — F", and by (ii) it restricts to an isomorphism
Vi(A) = Va(A).

O]

Example 3.2.3. Let V = Ry [:E], a= (al, az, ag) with
ar=1, ar=x+1, as =22 +1

and let f: Ry[z] — Ra[x] such that:

A= (f:a,a) =

S = O
o = O
o = O

i. Show that a is a basis of V.
ii. Is it true that a; — aj is an eigenvector?
iii. Find a basis for each eigenspace of f.

iv. Find a basis for each eigenspace of A.

"For example, if @ = (a1, a2, a3) and v = a1 + 2a2 + 5as, then

1
[”U]@ = (2) .
5
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Proof. i. The polynomials a1, as, ag span (show why) V' and their number equals dim Ry[z] =
3, hence they are linearly independent and therefore a basis of Ra|x].

ii. Note that f(a1) = f(a2) = f(a3) = az. Take A € R such that
f(al—a3) = )\(al—ag) = f(al)—f(ag) = )\(al—ag) = )\((11—(13) =0&a; —as 7'5 0A=0.
Hence a; — a3 is an eigenvector of f with corresponding eigenvalue 0.

iii. Letv € V and A\ € R such that

flv) =X <= f(ria1 + rea2 + r3a3) = A(r1a1 + r2a2 + r3a3)
<~  rif(ar) +raf(az) +r3f(as) = Aria; + Areas + Arsas
<  Ariay +ag(Arg —r1 —ro —1r3) + Arsaz =0

(Arq1 =0

— 7’1+T2(1—)\)+7’3=0

/\7‘3:0

Thus the system has a nonzero solution if and only if

A 0 0
det|1 1—X 1] =0<«= A=0 or A=1.
0 0 A
Hence:
1.

Vi(0) = {ria1 + roag +r3az | r1 +ro +r3 =0} = (a2 — a1,a3 — a1)

linearly independent (show why), so {as — a1, a3 — a1} is a basis of V(0).

Vi(1) = {ria1 +reaz +r3az [ 11 = r3 = 0} = {r2a2} = (az) .
Hence {as} is a basis of V(1).

iv. By Proposition 3.2.2 we have that

{laz — a1la, [a2 — a1]a}
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is a basis of V4(0) and

a basis of V4(1).

3.3 Characteristic polynomial

Definition 3.3.1. Let A € F"*" with A = (a;;). The characteristic polynomial of A is:

air —x - a1n
xA(z) = det(A — «1,,) = det

Example 3.3.1. 1. If A = (a), then xa(z) = det(a — z) = a — =.

1 3
2. If A= <4 2),then.

1—-=z 3
xalz) = det( 4 2—x>

= l1-2)2—2)—12
= 22-32-10

= (z+2)(z—-5).
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3. IfA= , then:

S O N
=~ =W
N W o

= 2-2)[(1-2)(2—2)—12]
= 2-2xz)(z+2)(z-5).
Properties 3.3.1. Let A € C"*". Then:
i xa(z) = xat(x)
ii. If A is upper or lower triangular with diagonal entries a;;, then:
xa(x) = (=1)"(x —an) - (z — ann)-

iii. If A; € F%*"i fori=1,...,sand A € F"*" with

n=mny+--+ng

of the form:
Al o % - %
0 Ay * -+ x
A= . . . 3
: : e %
o o o0 --- A
then:

xa(x) = xa,(z) - xa, ().

Proof. i. We have:
Xat(z) = det(A" — 21,,) = det (A — 21,,)") = det(A — z1,,) = xa(z).

ii. Let A be upper triangular, that is:
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Then:

xa(@) = det(A — al,) = det | | =T ).

iii. We use the following lemma:
n1Xn g XN By *
Lemma 3.3.1. (a) If By € F"*™ By € F"2*"2 and B = , then:

det B = det B - det Bs.

Bl *
0 32 . * )

b)) IfB=] . L .| with B; € F™%*" andn = ny + - - - + ng, then:
0 O B,

S
det B = HdetBi.
=1

Proof of the lemma.

(a) If By = 1,,,, then the property follows immediately by expanding along the first column
of B. Similarly for By = I,,, by expanding along the last row. In the general case:

Bl * . Hnl 0 Bl *
0 B2 - 0 B2 0 ]Inz ’

det B = det B - det Bs.

hence:

(b) The general result follows by induction, applying (1) successively.

Back to the proof.

Since A has the form:

)
S
O
*
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we have:

Ay — 1y, * e *
0 A — x_[n e *k S
xA(z) = det(A — zI,,) = det ) ’ S . = H x4, ().
: i=1

0 0 o Ay — 2y,

Proposition 3.3.1. Let A € F"*". Then:

* The leading coefficient of the characteristic polynomial y 4(z) is (—1)™.

* If A = (a;j), then:

n

xa(z) = H(an‘ —x) + (),

i=1
where deg i (z) < n — 2.

Proof. From the definition of the characteristic polynomial:
xa(z) = det(A — xI,,).
Applying Lemma 3.3.1, we know that the determinant expansion includes all terms of the form:
(—=1)" - (a1j, — x015,) - - - (@nj, — Tnj, ),

where (j1,...,Jn) is a permutation of {1,...,n}.
The only term that contains =™ is when (j1,...,j,) = (1,...,n), i.e. the product:

(a11 — x)(aze — x) -+ - (apn — ).

This yields a degree n polynomial with leading term (—z)™ = (—1)"z".

All other terms contain at most n — 1 occurrences of x, hence they contribute to a polynomial of
degree at most n — 1.

Moreover, by a direct observation:

[T(ai =) = (~1)"a" + -+ (=)' tr Az + det A,

=1

so the difference:
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is a polynomial of degree at most n — 2, i.e.:

Proof. Consider the matrix

aip] — & ai2 e Aln
as  ayp —x
B=A-2al, =
Gnl an2 o App — T

Consider the term

with
(jl?'”ajn) # (].,,Tl)

Hence there exists ¢ with j; # t, so

btjt # ay — .

Then bj, = a4, for some t # s. Since ays lies in column s, in the original product there is no other
element from column s. Hence the element a5 — = does not appear and therefore deg ¢ () < n—2.

It remains to show that in the sum of Lemma 3.3.1 the term (a1; — ) - - - (an, — ) appears
with coefficient +1. Indeed: (i) This term appears in the sum (by induction on n and expansion
along the first row), and (ii) it does not cancel with another one, due to its uniqueness. O

a b

Example 3.3.2. For the matrix A = <c d) € F2%2 we have:

xa(z) = (a — x)(d — ) — be.

Corollary 3.3.1. Let A € F**" and y4(z) = (=1)"2" 4+ a,_12" ! + - -+ + a1z + ao. Then:

1. det A = ag and Tr(A) = (—1)"a,_1,

2. ifxa(x) = (M —2) - (A — ), thendet A =[], Aj and Tr(A) =37 | .
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Proof. 1. ltis clear that det A = x 4(0) = ag. From Proposition 3.3.1 we have:

n

xa(@) = [J(ai — o)+ ¥(x), degy(x) <n—2, A= /(ay).

i=1
Hence, by matching coefficients of 2"~ we obtain:

an1=(—1)"Tr(A) = Tr(A) =(-1)""ta, 1.

2. From the characteristic polynomial we have y4(0) = A;--- A\, = det A. Also, from the
above:

Tr(A) = (=D)"ap—1 = (=D)"(=1D)" M+ -+ ) =M1+ + \p.

1 3

Example 3.3.3. Let the matrix A = ( 4 9

) € R?%2, From Corollary 3.3.1 (i) we have:

xa(z) = 2* — Tr(A)z + det A = 2 — 3z — 10.
Moreover:
xa(z) = (5 —x)(—2 — x), i.e. the eigenvalues are \; = 5, Ao = —2.
Hence, by (ii) of the corollary:
Tr(A) =X +X2=3, detA= X\ -)Xy=—-10.

Proposition 3.3.2. If A, B € F™*" are similar, then x 4(x) = xp(z).

Proof. Since A is similar to B, there exists an invertible P € F”*" such that B = P~1AP. It is
left as an exercise to the reader to show that for every ¢(x) € F[x] we have:

¢(B) = P~'p(A)P.
Therefore:
xB(x) = det(B — zl,) = det(P~1AP — 21,,) = det(P~ (A — zI,) P) = xa(z).
O

Definition 3.3.2. Let f: V — V be a linear map and A = (f: a, a) for some ordered basis G of
V. The characteristic polynomial of f is defined by:

X (@) = xa(@).
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3.4 Chapter 3 Exercises.

Group A :1,2,3,4,5,6,9,10,11,13,14, 18,19, 20,21, 32,34, 35,
Group B: 7,8,12,15,16, 17,22, 23, 24, 25, 26, 29, 30, 32, 36,
Group C: 27,28

Exercise 3.1. a. Let

1 1 1 -5 1
_ 1 1 —5 1 4x4 _ 1 4x1
A= 1 -5 1 1 eC and X = 1 e C* .
-5 1 1 1 1
Is X an eigenvector of A? Is 6 an eigenvalue of A?
1 -2 2
b. Find the eigenvalues and eigenvectorsof A = [ 0 —3 4| € R33,
0 -2 3

Exercise 3.2. Let A € F"*" and ¢(z) € F[z].

a. Show that if A € F is an eigenvalue of A with corresponding eigenvector X, then ¢(\) is an
eigenvalue of p(A) with corresponding eigenvector X.

2 0 3
b. Let A= | -3 —2 4. Find (without computations) an eigenvalue and a corresponding
1 0 3

eigenvector of B = A'82! 4 [3.

c. * Let F = C. Show that for every eigenvalue A\ of ¢(A) there exists an eigenvalue \; of A
such that A = ().

5 3 3 1
Exercise 3.3. Let A= | -3 —1 —-3| eR33and X = | —1 | e R3*L
-3 -3 -1 0

a. Is it true that X is an eigenvector of A? If yes, find two different bases of the eigenspace
Va()\), where A is the eigenvalue corresponding to the above eigenvector.

b. Is it true that X is an eigenvector of A1821 4 [3?
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c. Find a matrix B € R3*3 with X € V(3).

Exercise 3.4. Find the eigenvectors of A = <_12 _11> € F?*2 in the cases
a. F=R
b. F=

Exercise 3.5. Find a basis for each eigenspace of the matrices

0 0 0

a. A=[1 1 1| eR3*3,
0 00
21 0

b. B=|0 1 —1] e R3*3,
0 2 4

Exercise 3.6. Compute, for the various values of a, the dimensions of the eigenspaces of A =
1 a 4

0 1 0] eRr3x3,
0 2 3

n
Exercise 3.7. Let A = (a;;) € F**" such that forevery j = 1,--- ,n, wehave ) a;; = 1. Show

=1
the following.

a. There exists a nonzero X € F**! such that AX = X.

b. If A is invertible and A~! = (bij), then for every j = 1,--- ,n, we have ) b;; = 1.
i=1

Exercise 3.8. Let A # 1 be two eigenvalues of a matrix A € F™*" with corresponding eigenvectors
u,v. Then

a. u,v are linearly independent and
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b. forevery a,b € F — {0}, au + bv is not an eigenvector of A.

Exercise 3.9. a. Is it true that 2 is an eigenvalue of the linear map
f:RYS RY flo,y,z,w) = (z+w,2y + 2,32 +w,z +w) ;
Is it true that (1,0, —1, 2) is an eigenvector of f?
b. Find the eigenvalues and eigenvectors of the linear map

fiR3 5 R flo,y,2) = (x —y2x + 3y + 22,2+ y + 22).

c. Let f : F?2 — TF? be the linear map defined by f(e;) = —es and f(e2) = e;, where
é = {e1,e2) is the standard basis of F2. Compute the eigenvalues and eigenvectors of f
when i. F = R and ii. F = C. Give a geometric interpretation of the result in i. .

Exercise 3.10.  a. Find the possible eigenvalues of the linear map f : V' — V in each of the

cases
iLfr=1y,
i g

b. Then prove the following statement. If ¢(f) = 0 for some ¢(x) € F[z], then every eigen-
value of the F-linear map f: V' — V is aroot of p(x).

c. Prove the following statement. If ¢(A) = 0 for some p(x) € F[z] and A € F"*", then
every eigenvalue of A is a root of p(z).

Exercise 3.11.  a. For which a € R is (1, 1) an eigenvector of the linear map
fRP =R f(r,y) = (x+ay, 20 +y) ;

b. Find the eigenvalues and eigenvectors of the linear maps

L. f:RE}_)R?)) f(:z:,y,z):(4x,2y—5z,y—2z),
2. g:C3 = C3, f(z,y,2) = (4a,2y — 52,y — 22) .

Exercise 3.12. A linear map f : Ro[z] — Ro[z] is given, with f(2? + ) = 222 + 2z, f(z +1) =
2x +3and f(1) =z + 3.
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a. Find the eigenvectors of f and a basis for each eigenspace of f.
b. Is it true that f is an isomorphism?
c. Is it true that f4 —6f — 4 - 1R, ;] 1s an isomorphism?

d. Find two linearly independent eigenvectors of f* — 6f — 4 - IR, [a]-

Exercise 3.13. Find the eigenvalues and eigenvectors of the linear maps

a. g: Rofz] = Raofz], g(¢(z)) = o(1)z
b. h:Ro[z] = Rolz], h(é(z)) = ¢'(x), where ¢ () is the derivative of ¢(x).

Exercise 3.14. Let A € C>*3 with x4 (z) = —23 + 322 — 2.

a. Is A invertible?
b. Is (A — 3I3)(A — 413) invertible?
c. Compute the determinant of A% — 24 — 1513.
d. Is it true that there exists an ordered basis a such that for the linear map
f:C3 = C3, flx,y,2) = (x + 2y + 32,2y + 32,32)

we have (f : a,a) = A?
e. Find x 42(z).
f. TIs it true that there exists B € C3*3 such that AB — BA = A* for some positive integer k?

g. Is it true that there exists an integer & > 1 with A*¥ = A?, where A? is the transpose of A?

Exercise 3.15. Let A, B € F"*", where A is invertible. Show that y4ap(x) = xpa(z). (Note.
The conclusion also holds without the assumption that A is invertible, see exercise 27.)

Exercise 3.16. Let A € F"*" be invertible and x4 (x) = (—1)"2" + ap_ 12" + - + a1z + ao,
where ag # 0. Show that

_ il n
yacs (@) = (—1)n [an 4 Otgnt oy (5
ao ap ap
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Exercise 3.17. Let

0 0 0 —agp
1 0 0 —al

A=10 1 0 —ag c FrXxn,
0 0 1 —Qp—1

a. Show that the characteristic polynomial of A is (—1)"(2"™ + a,_12" 1 + - -+ + ag).

b. Show that if \ is an eigenvalue of A, then

Aﬁ—l

is an eigenvector of A’

Exercise 3.18. Find the characteristic polynomial of

0100 -+ 0
0010 0
0001 - 0

A=1|. . . . | e B
00 0 0 1
1000

Exercise 3.19. Find the eigenvalues of the matrix

c (C5X5

Q

Il
co o wkr
cC oo NN
cCo W
W NN O
W N N L o

Exercise 3.20. Let A € C™*" be invertible.

1
a. Show that X is an eigenvalue of A if and only if X is an eigenvalue of A~
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b. Suppose A is similar to A~! and n is odd. Show that 1 or —1 is an eigenvalue of A.

Exercise 3.21. Let A € C*** such that ya(z) € R[z], detA = —13, Tr(A) = 4 and one
eigenvalue of A is 2 — 3i. Find the eigenvalues of A.

Exercise 3.22. Let A € C"*" be invertible. Show that if A is similar to —A, then n is even,
n = 2m, and the characteristic polynomial of A is of the form (22 — p1)--- (2% — p,), where
n > 2.

Exercise 3.23. Find the eigenspaces of the linear map f: R™*" — R"*" A+ Al where n > 2.

Exercise 3.24. Consider the diagonal matrices

ai bl
A: ,B: anXn'

Show that the following statements are equivalent.

a. A, B are similar.

b. There exists a permutation o € Sy, such that b; = a,(;) foreach: =1,--- ,n.
c. xa(x) = xp(x).

Exercise 3.25. Leta,b € F. Find the characteristic polynomial, the eigenvalues, and the eigenvec-
tors of

a b b b
b a b b
A=|b b a b| e,
b b b a

0 a a a
b 0 a --- «a

An: b b 0 --- a e Frxn
b b b - 0
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Exercise 3.27. Let A € F"*" and B € F"*™. Show that (—1)"z"xap(z) = (=1)"a"xpa(x).
(Consequently, if m = n, then x ap(x) = xpa(x).)

Exercise 3.28. Let a1, - ,an,b1,--- ,b, € Fand C = (a;bj) € F"*". Using the previous
exercise (or otherwise) find x¢(x) and the eigenvalues of C.

Exercise 3.29. Letn > 1 and

0 0 0 1
00 1 0
A=1|: + .+ | epmxen,
0 1 0 O
1 0 0 0

Find the characteristic polynomial, the eigenvalues, and the eigenvectors of A. Find the dimension
of each eigenspace of A.

A -B
B A

A B

3 nxn —
Exercise 3.30. Let A,B € C"*", C = <B A

Then

> c (C2n><2n and D = < > c (C2n><2n.

a. xc(r) = xa+B(x) - xa-B(T).

b. xp(z) = xa+iB(®) - Xa-iB(T).
) . . (A A
c. Ifthe eigenvalues of A are A1, - - - , A,, then the eigenvalues of the matrix A A are

N1, 5 22, 0, 0.
N——

n

Exercise 3.31. Let a,b € R. It is given that the matrices A, B € R3*3 are similar, where

1 a1
A=la 1 b|,B=
1 b 1

o O O

0 0
1 0
0 2

Find a, b.
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Exercise 3.32. Find the characteristic polynomial of the linear map f2 = f o f, where

[R5 R, f(z,y,2) = (0,3,y).

Exercise 3.33. Find the characteristic polynomial of the linear map f2 = f o f, where

f : Rg % RS? f(x7y7z> = (07x7y>'

Exercise 3.34. An ordered basis % = (u1, u2, u3) of R? is given and the linear map f : R? — R3

10
with corresponding matrix A = (f : 4, 1) = 01
11

—_ O =

a. Find x () and 2 ().

b. Is it true that u; + us + 2ug is an eigenvector of f? Same question for u;.
c. Find a basis for each eigenspace of A.

d. Find a basis for each eigenspace of f.

e. We know that V(0) C V2(0). Is it true that we have equality?

f. Is it true that there exists a linear map g : R? — R3 such that f(g(v)) = v for every v € R3?

1 2
0 3

f is linear, find a basis for each eigenspace of f.

Exercise 3.35. Let A = and f : R?*2 — R?*2 f(X) = AX — X A. After showing that

Exercise 3.36. Consider the vector space F'(R, R) of functions R — R and the subspace V' spanned
by the functions sin x, cos z. Find a basis of each eigenspace of the linear maps

a. f:V =V, f(¢(x)) = ¢ (x) (derivative),
b. g:V =V, g(¢(x)) = ¢"(x) (second derivative).

Exercise 3.37. Show that for each

a. Ac C>2 ya(x) =22 - Tr(A)x + dety,
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b. A€ C¥3 xa(z) = —23 + Tr(A)z? — Tr(adj(A))z + det A.

Exercise 3.38. Examine which of the following statements are true. In each case give a proof or a
counterexample.

a. If A is an eigenvalue of A € F™*" and u an eigenvalue of B € F"*", then A\ + pu is an
eigenvalue of A + B.

b. If Aisaneigenvalue of A € F"*™ and y1 an eigenvalue of B € F*" then A\ is an eigenvalue
of AB.

c. Every A € R?*2 has at least one real eigenvalue.

d. Every A € R3*3 has at least one real eigenvalue.

e. If 2 is an eigenvalue of A%, where A € R™*", then /2 is an eigenvalue of A.
f. If xa(z) = xpB, where A, B € F"*" then A, B are similar.

g. Let A, B € F™*™. Then ¢(A), ¢(B) are similar for every ¢(z) € F[z].

h. There exists A € F3*3 with eigenvalues 0, 1, 2, 3.

i. If v is an eigenvector of the linearmap f : V — V and v € ker f, then 0 is an eigenvalue of
I

j. Let A € R¥*3 with xa(z) = —(2%2 — 1)(x — 5). Then there exists a linear map f : R3 — R3
and an ordered basis G of R? with f(1,0,0) = 3-(1,0,0) and (f : a,a) = A.

k. Let A € F™ ", If —1 is an eigenvalue of A, then there exists a nonzero X € F"*! with
A’X = X.



CHAPTER 4

DIAGONALIZABILITY

4.1 Diagonalizable Matrices

Definition 4.1.1. Let A € F"*". We say that A is diagonalizable if there exists an invertible
matrix P € F"*" such that P~'AP = A, where A is a diagonal matrix.

Observation 4.1.1. Let A = P~ ' AP with A = diag(ay, as, ..., a,). Since similar matrices have
the same characteristic polynomial, we have:

xa(x) = xa(z) = (a1 —z)(az — x) - - (an — ).

Here aq, ao, . . ., a, are the eigenvalues of the matrix A.
Example 4.1.1. 1. Let A = 4 9] € R“**and P = 1 4/ Then we observe that:

P71AP = diag(—2,5).
Hence the matrix A is diagonalizable.

1 2
2. Let A = < 01
existed an invertible matrix P with:

€ R?*2. We will show that A is not diagonalizable. Indeed, if there

PlAP = diag(aq, a2),

59
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then, by Remark 4.1.1 and since the eigenvalues of A are a; = a2 = 1, we would have to
have:
PlAP=1, & A=1I,

which is a contradiction.

0 1

3. Let A = <_1 0

) € R?*2, The matrix A is not diagonalizable, because:

xA(x) = 22 +1

has no roots in R. Hence A has no eigenvalues in R and, according to Remark 4.1.1, it is not
diagonalizable.

0 1

4. Let A = (_1 0

) € C?*2, The matrix A is diagonalizable, since for the invertible matrix:

r=(3 )

P~AP = diag(i, —i).

we have:

Question 4.1.1. The examples raise some basic questions. Let A € F"*™,

1. When is A diagonalizable?

2. If A is diagonalizable, how do we find matrices P and A such that P~ AP = A?

If A € F"*" we denote by A® the i-th column of A. For example, if

1 -3

4=l 2);
1 -3

M = @ —
=) = ()

A= (A(l),A(Q),--~ ’A(N)) _

then:

With this notation we have:

i. If A, B € F™*" then (AB)” = AB(.
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ii. Let £ = (E1,Es,--- , E,) be the standard ordered basis of F"*!. Then I,(f) = F; and in
fact A = AFE;.
Proof.  i. If B=(BW,B® ... BM) then:
AB — (AB(I),AB@), . ,AB(”)),
and from the definition of matrix multiplication we have:

(AB)® = ABW,

1. We observe that: ‘ ‘ ‘
AE; = ATV = (AL, = A®),

O]

Observation 4.1.2. Let A, P, A € F**" with P invertible such that P~* AP = A, where A is not
necessarily diagonal. The following are equivalent:

i. The ¢-th column of P is an eigenvector of A with eigenvalue A.

ii. The i-th column of A equals \FE;.

Proof. Assume that P! AP = A. Then:

AP = PA.

i. If AP = AP then:

AW = (P71AP)®D = p=14p0) = \p~1p0) = \IO) = \E;.

ii. If A®) = \E;, then: ‘ .
PAD = \PE; = AP,

SO:
APW — \pW),

Since P is invertible, P() # 0. O
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Theorem 4.1.1. 1st Diagonalizability Criterion Let A € F™*™. The following are equivalent:

i. A is diagonalizable.

ii. There exists a basis of F**! consisting of eigenvectors of A.

Moreover, if {x1, 22, ..., T, } is a basis of F"*! of eigenvectors of A with corresponding eigen-
values A1, Ao, ..., A\, then setting
P = (xl, xo,. .. ,l’n) S ann)

the matrix P is invertible and:

P71AP = diag( A1, ..., \n).

Proof. i. — ii. Assume there exists an invertible P € F"*" such that P~'AP = A, where A is
diagonal.

Since the i-th column of A has the form A; F;, by Remark 4.1.2 it follows that the i-th column of
P, i.e. P\, is an eigenvector of A corresponding to eigenvalue \;.

Since the columns of P form a basis (because P is invertible), we obtain a basis of F”*! consisting
of eigenvectors of A.

ii. — i. Now assume that {x1,72,...,x,} is a basis of F"*! consisting of eigenvectors of A.
Thus:

Ax; = Nz, foreachi=1,...,n.

Set P = (x1,x2,...,%y,), so that P = z;. Since the z; form a basis, P is invertible. By Remark
4.1.2, it follows that:
(P~YAP)®) = \E;,

hence P~! AP is diagonal. O

Example 4.1.2. a. Let

Then:

xa(z) = (z +2)(z - 5), VA(—2):<<_11>>, VA(5):<G>>.
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() ()

-1 3
det(l 4>750,

so they form a basis of R2%! and A is diagonalizable. Setting:

-1 3
(i)

we obtain that P is invertible and P~* AP = diag(—2,5).

The vectors

are linearly independent, since

b. Let
21 0
A=10 1 —1] e R*3,
0 2 4
We have:
1 1
xa(@) = (2 - 2)*(3 - 2), VA(2):< 0 > VA(3):< 1 >

0 -2

We only have two linearly independent eigenvectors, while we need three for diagonaliza-
tion, because we cannot produce a basis of R3*! from eigenvectors of A. Therefore, A is not

diagonalizable.
c. Let
1 -3 3
A=[3 -5 3| eR¥3
6 —6 4
We compute:

1 1 1
xa(z) = (2+2)%(4 —2), VA(—Q):< 1], o > VA(4):< 1 >
0 ~1 2

The three eigenvectors are linearly independent, hence they form a basis of R3*! and A is
diagonalizable. Setting:

1 1
P=11 0
0 -1

NI

we have that P is invertible and:

P71AP = diag(—2, —2,4).
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Proposition 4.1.1.  i. Let A € F™*™ be diagonalizable and let ¢(z) € F[z] be a polynomial.
Then the matrix ¢ (A) is also diagonalizable.

ii. If A is diagonalizable and invertible, then the matrix p(A~!) is also diagonalizable.

Proof. i. Since A is diagonalizable, there exists an invertible matrix P € F™*" such that:
P71AP = A = diag(\1,..., \n).
Since ¢ is a polynomial, we have:
©(P7'AP) = p(A), and (P 'AP) =P lp(A)P

Thus:
P™lp(A)P = p(A).

The matrix ¢(A) is also diagonal, since:

A 0 (A1) 0

0 An 0 ¢(An)
Hence ¢(A) is diagonalizable.
ii. Since A is invertible and diagonalizable, there exists an invertible P such that:
P7YAP = diag(\1,..., \n), with \; # 0 for each i.

Then:

_ 1 1
PlA'p = (P'AP) ' = diag [ —..... — ).
( ) fag { 5o 1

So A1 is also diagonalizable. Since ¢ is a polynomial, from part (i) it follows that o (A1)
is also diagonalizable.

O]

4.2 The Major Diagonalizability Criterion

Lemma 4.2.1. If X; € V((\;) fori =1,... ¢t and
Xi+--+ Xy =0,

then
X1:X2:---:$t:0.
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Proof. This result has been proved in Proposition 3.1.1. O

Corollary 4.2.1. 4.2.2 Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof. This result has been proved in Corollary 3.1.2. O

Corollary 4.2.2. Let A € F™*™ and let A1, A2 be eigenvalues with A; # As. Then:

VA()\l) N VA()\Q) = {0}

Proof. The result follows immediately from Lemma 4.2.1. O

Lemma 4.2.2. Let A € F"*™ and let A1, ..., \; be distinct eigenvalues. Then:

i. If B; is a basis of V4(\;) foreachi = 1,...,¢, then the set By U --- U By is a basis of

Va(Ar) + -+ Va(hy).

1. We have:

dim (Z VA()\Z-)> = dimVy ().
=1

=1

Proof. i. Let B; be a basis of V4 (\;) with
B’L = {bi17 ttt binLi}‘
By the definition of the sum of subspaces we have:
t t
D Valh) = <U Bi> :
i=1 i=1
It suffices to show that U’;f:1 B; is linearly independent. Let:

t m;
Z Z aijbij =0

i=1 j=1
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with a;; € F. By Corollary 4.2.2 and since eigenvectors belong to eigenspaces with different
eigenvalues, we have

m;
Zaijbij =0, foreach i=1,...,¢t.
=1

Since
B; = {bz-l,...,bimi}
is a basis, all coefficients a;; are zero; hence the union is linearly independent.

ii. From (i) we have that the union of bases of the eigenspaces is a basis of the sum of the
eigenspaces. Therefore:

dim (Z; VA()\i)> =

t

s

i=1

t
= dimVa(\).
=1

O]
Theorem 4.2.1 (Major Diagonalizability Criterion). Let A € F"*™ and let A, ..., \; be the dis-
tinct eigenvalues of A. The following are equivalent:
i. A is diagonalizable.

ii. There exists a basis of F"*! consisting of eigenvectors of A.

iii. Va(A1) 4+ -+ Va(\g) = FxL,

iv. dimVy(Ay) + - +dimVy(Ag) = n.

v. The characteristic polynomial can be written as:

xa(@)=(=1)"(xz—=A)™ -+ (x — Ap)™, with dim V4(N\;) = n,.

Proof. » Statements i. and ii. are equivalent by Theorem 4.1.1.

* iii. <= iv. By Lemma 4.2.2, we have:

k k
> Va() =F™! & dim (Z VA(Ai)> =n.

i=1

* ii = iii. If there exists a basis of eigenvectors, then the eigenspaces cover the whole space.
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* {ii. = ii. By Lemma 4.2.2, the union of bases of the eigenspaces is linearly independent, and
since it covers the whole space, it is a basis of F*!,

* i. = v. Since A is diagonalizable, it is similar to a diagonal matrix diag(ay, ..., a,), hence:

(x — )\l)m
1

xa(@) = (@1 =a) -+ (@, = @) = (~1)"]

k
1=

And for each i:

dimVy(\;) = n —rank(A — \;I,,) = n —rank(A — \;I,,) = n,.

* v. = iv. From the assumption dim V4 (\;) = n; for each i, we obtain:

k k
D dimVa(h) =D ni=n.
i=1 i=1
O]
Corollary 4.2.3. If A € F™*" has n distinct eigenvalues, then it is diagonalizable.
Proof. The claim follows immediately from (iv) of Theorem 4.2.1 O

Example 4.2.1. Consider the matrix

1
A=10
0

S = N

3
5| e R3*3.
6

Then, by Corollary 4.2.3, the matrix A is diagonalizable, since its eigenvalues are 1, 4, 6, which are
distinct.

Definition 4.2.1. Let \ be an eigenvalue of the matrix A. If (z — X\)™(™) is the largest power of
x — A dividing the characteristic polynomial y 4(x), then:

+ the number 1 () is called the algebraic multiplicity of A,

 while d () := dim V4()) is called the geometric multiplicity of \.
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Theorem 4.2.2. Let A € F"*" and let X be an eigenvalue of A. Then:
d(A) <t(A),

i.e. the geometric multiplicity of A is less than or equal to its algebraic multiplicity.

Proof. Lett () be the algebraic multiplicity of A, and let {vy, ..., v;} be a basis of the eigenspace
Va()). By the Basis Extension Theorem, there exists a basis of F"*! of the form:
0= (V1 ey Uty Vpgly.-v,Up).

Consider the linear map:
La: FPE S Pl X AX.

Then the matrix of £ 4 with respect to the basis ¥ is:
. DA AN )\]It *
B—(LA.v,v)—(O *>

This is in block upper-triangular form. From the properties of the characteristic polynomial (e.g.
Proposition 3.3.1), we have:

xB(T) = xar, () - x«(2).
Hence,
(z =N | xp(z) = xa(z)

since A and B are similar. ! Therefore,

t<t(N).

4.3 Diagonalizable Linear Maps

Definition 4.3.1. A linear map f: V — V is called diagonalizable if there exists an ordered basis
a of V' such that the matrix (f: a,a) is diagonal.

Observation 4.3.1. i. The map f is diagonalizable if and only if there exists a basis of V' consisting
of eigenvectors of f.

ii. Let f: V — V be a linear map and let b be an ordered basis of V. Then f is diagonalizable
if and only if the matrix ( f: b, 6) is diagonalizable.

!This holds because the matrix of £ 4 with respect to the standard basis is A.
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Proof. i. If f is diagonalizable, then there exists an ordered basis & = (a1, ...,a,) of V with
(f:a,a) =diag(Ai,..., \n), i.e. f(a;) = \ja;. Hence there exists a basis of eigenvectors.

Conversely, if @ is a basis of eigenvectors, then the matrix A = (f: @, a) has a basis of F"*!
consisting of eigenvectors and is diagonalizable (Theorem 4.1.1). Hence f is diagonalizable.

ii. If f is diagonalizable, then there exists a basis @ such that A = (f : a,a) is diagonal. But
the matrices (f : a,a) and (f : b, b) are similar, hence the latter is also diagonalizable.

Conversely, if (f : b, 3) is diagonalizable, then it is similar to a diagonal matrix, i.e. there exists
a basis a of V such that (f : a, a) is diagonal. O
Example 4.3.1. Let f: R? — R? be the linear map given by:
f(z,y) = (x + 3y, 4o + 2y).
Let the basis @ = (a1, az), where a; = (1,—1) and as = (3,4). Then:
fla1) = —2a1,  f(az) = 5as.
That is, both are eigenvectors. Hence the matrix (f : a, a) is:
(" 3)
0 5)’
which is diagonal. Therefore, f is diagonalizable.
Reminder 4.3.1. Let f: V — V be a linear map, let @ be an ordered basis of V, and let A = (f :
a,a). If \ is an eigenvalue of f, then the map:
o: V=T v vl
is a vector space isomorphism and moreover:
p(Vr(A) = Va(A).
Theorem 4.3.1 (Major Diagonalizability Criterion for linear maps). Let f: V' — V be a linear
map and let A1, ..., \; be its distinct eigenvalues. The following are equivalent:
i. f is diagonalizable.

ii. There exists a basis of V' consisting of eigenvectors of f.
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1. Vf()\l) + Vf()\g) + -+ Vf(/\k) =V.
iv. dim Vf()\l) + .-+ dim Vf()\k) =dimV.

V. xf(x) = (=1)"(x — A\)™ -+ (x — A\p)™ with dim V()\;) = n; foreachi =1,... k.

Proof. * i. & ii. By Remark 4.3.1.
* i. = iii. If f is diagonalizable, then for a suitable basis a the matrix A = (f : a,a) is
diagonalizable, hence by Theorem 4.2.1 we have > V4()\;) = F"*!. By Reminder 4.3.1, it
follows that V' = 3" V¢ (\;).

* iii. = i. (Exercise)

e iii. = iv. From the above, using Reminder 4.3.1 and Theorem 4.2.1, we obtain equality of
dimensions.

* iv. = iii. (Exercise)

* iv. = v. (Exercise)

4.4 Applications of Diagonalization

Diagonalization has wide applications: in computing powers of matrices, in recurrence relations of
sequences, in matrix roots, in systems of differential equations, and in many other problems.

Observation 4.4.1. If P~ AP = A = diag(\1, ..., \,), then for every m > 1:

(PT1AP)™" =A™ & P7'A™P =diag(\[",...,\™).

n

Application 4.4.1 (Matrix Powers). Let

2 -1 -1
A=10 -1
0 2 1

Compute the matrix A™ for every m € N.
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Proof. With straightforward computations we find:

0 1
VA(—l) = < -1 >, VA(l) = < 0 > , VA(2) = <
1 1

The matrix A has three distinct eigenvalues, hence it is diagonalizable.

Set:
0

P=|-1
1

,  with P~1AP = diag(—1,1,2).

—_ o
S O =

Then for every m € N we have:
A™ = P - diag((-1)™,1,2™) - P71
Finally, we obtain:
2m 1-=2m 1-2m
A"=1 0 (=)™ 0
0o 1—(—-1)™ 1

Let us now consider the Fibonacci-type recurrence:
=1 F=2 Fu=F+F_.

This sequence often appears in counting problems. For example:
How many binary sequences of length n do not contain two consecutive 15?

This problem translates into a recurrence, which can be analyzed via diagonalization of a suitable
matrix.

Application 4.4.2 (Recurrences — Fibonacci sequence). We have I} = 1, Fb = 2, F,41 =
F, + F,,_1 for every n > 2. We observe that:

F, \ (0 1\ (Fh
Fn+1 11 Fn .
By induction one proves that:

Fn—l _ n—2 1 o 0 1
<Fn>_A <1>, WhereA—<1 1).
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We compute the characteristic polynomial:

xA(z) =z —x—1,

with roots (eigenvalues):

The eigenspaces of A are:

nen=((x)) vae=((5,))

1 1 .
P = (/\1 )\2> , A =diag(\, A2).

Set:

Then:
A=PAP ' = A™ = PA"P~!  foreverym € N.

Therefore, for every n > 3:

Foot) _ na (1Y _ L[ X=X
F, 1 VAP Aty

(5]

Hence:

Fp=—
V5

Application 4.4.3 (Matrix Roots). Let

2 -1 -1
A=10 -1 O
0 2 1
Find a matrix B € F3*3 such that B3 = A.
Proof. From Application 4.4.1 we have
-1 0 0
A=P|l 0 1 o] P!
0 0 2
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where
0 1 1
P=[-1 00
1 10

Then, setting
B = Pdiag (—17 1, \"’/5) p!

we obtain B3 = A, as required. O
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4.5 Exercises of Chapter 4.

Group A: 1, 3,4,5,8,9, 10, 14, 15, 16, 17, 18, 25, 32, 36
Group B: 2,6,7,12, 13, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35

Exercise 4.1. Examine which of the following matrices are diagonalizable. If some A; € F"*" is
diagonalizable, find a basis of F**! consisting of eigenvectors of A;, an invertible P; € F"*" such
that P;lAiPi is diagonal, and the matrix PflAiPi.

a. Ay <; :i) € R2%2 5
C A3 = <_11 _11) S R2><2 ,
1 1 1
d Ay=(1 1 1] eR>3
1 1 1

Exercise 4.2. Let A € F"*" be a diagonalizable matrix.

a. Show that for every positive integer k the matrix A* is diagonalizable, and more generally
that for every ¢(x) € F[x] the matrix ¢(A) is diagonalizable.

b. Show that if A* = 0 for some positive integer k, then A = 0.
c. Show that if A is invertible, then (A1) is diagonalizable for every ¢(z) € F|x].
d. If ya(x) = (z — 3)'°, find A.

e. Let X € F™*! with A*X = 0 for some positive integer k. Show that AX = 0.

f. Suppose that A is invertible and F = R. Is it possible that A+A~! is similar to diag(1, 3,3, - - ,3)?

Exercise 4.3. Let

b
Il
BN W
N O N
RN
m
=
w
X
w
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a. Find the eigenvalues of A, a basis for each eigenspace of A, and the dimension of the vector
space generated by the eigenvectors of A.

b. Determine whether A is diagonalizable, and if it is diagonalizable, find an invertible matrix
P such that P~ AP is diagonal.

Exercise 4.4. Let A = (;1 g) € R2%2,

a. Prove that the matrix A is diagonalizable if and only ifa > —1/12.

b. Let a = 2. Find invertible matrices P, Q € R?>*? such that P~' AP and Q' AQ are distinct
diagonal matrices.

Exercise 4.5. a. Let A € R™" be a diagonalizable matrix whose eigenvalues are nonnegative.
Show that there exists B € R™*" such that B2 = A.

0 1
b. Show that <0 0

0 1
2 _
2= (5 )

Exercise 4.6. Let A, P, A € F"*" such that AP = PA and A is diagonal, A = diag(\, -+, \p).

> € R2*2 is not diagonalizable and that there is no B € R2*2 such that

a. Show that foreach k = 1,--- ,n we have AP®*) = X\, P*) where P() is the k-th column
of P.
b. Let A\, A2, A3 € F. Find a matrix A € F3*3 with eigenvalues A1, A2, A3 and corresponding
eigenvectors
1 1 1
11,111,110
1 0 0

Is A unique?

Exercise 4.7. Let A = € C** with det A = TrA = 0. Show that A is diagonal-

EOE N
o O w o
- O O O

EE N

izable.
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Exercise 4.8. Let A € F™*" be an upper triangular matrix of the form

A *
A: )
0 A

that is, A is upper triangular and every diagonal entry equals A. Show that A is diagonalizable if
and only if it is diagonal.

Exercise 4.9. Determine whether

0 0 - 0 —a
1 0 - 0 -

A—0 1 0 —ay | ecmn
0 0 - 1 —a,,

is diagonalizable.

Exercise 4.10. Find the values of a, b, ¢ € R such that
30 0
A=|a 3 0 | eR>
b ¢ -2
is diagonalizable.
Exercise 4.11. Find the values of a € R such that the dimension of the vector space generated by

the eigenvectors of

0 1
A=la 0 c R3*3
0 1

o @ O

is equal to 3.

Exercise 4.12. Let A, B € F™*™ such that AB = BA. Prove that if A has n distinct eigenvalues,
then B is diagonalizable.

Exercise 4.13. Let A, B € F™"*™ be two diagonalizable matrices. Show that A, B are similar if
and only if x 4(x) = xB(x).
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Exercise 4.14. Find all a € F such that the linear map f : F? — 3 is diagonalizable in the
following cases:

a. f(z,y,2) = (v +az,2y,ay + 22),

b. f(z,y,2) =(ax+y+z,2+ay+z,x+y+az).

Exercise 4.15. Determine which of the following linear maps are diagonalizable:

a [T =T f(z,y,2) = (x+y,y— 22y +42),
b. g:F3 = T3 g(x,y,2) = 20 +y,y— 22y +42),
c. h:Folzx] = Folz], h(d(z)) = ¢(1)z.

Exercise 4.16. Let f : V' — V be a diagonalizable linear map such that A € {—1,1} for every
eigenvalue A of f. Show that f? = 1y,

Exercise 4.17. Let f : V — V be an isomorphism. Prove the following.

a. If A € F is an eigenvalue of f, then \ # 0.

b. A\ € Fis an eigenvalue of f < A\~! is an eigenvalue of f~1.

o

. Forevery A € F — {0}, Vy(A\) = Vi (A71).

o

. f is diagonalizable < f~! is diagonalizable.

Exercise 4.18. Let f : R? — R3? be a linear map such that there exists an ordered basis ¢ =
('Ul, V2, 1)3) of R? with

0 0 X\
(fra,a)=[0 A 0
A3 0 0

a. Show that f? is diagonalizable.
b. Is it true that f is diagonalizable?

c. Suppose that A1, A3 > 0. Show that v/ A\jv1 + v/ A3vs is an eigenvector of f.
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Exercise 4.19. Let f : V — V be a diagonalizable linear map. Show that ker f = ker f™ and
Imf = Imf™ for some positive integer m.

Exercise 4.20. For every positive integer & compute A*, where

1 -3 3
A=|0 -5 6
0 -3 4
Exercise 4.21. Let
2 -1 -1
A=10 -1 0
0 2 1

a. Compute the power A*, k > 1.
b. Find a matrix B € R3*3 such that B3 = A.

c. How many matrices B € C3*3 can you find such that B3 = A?

Exercise 4.22. Consider the sequence (a,,), n = 1,2, ---, defined by the terms a; = 1, as = 4
and the recurrence relation a,, = 2a,,—1 + 3a,—2, n = 3,4, ---. Find the general term a,, in terms
of ay, as and n.

Exercise 4.23.  a. Let A € R™*" be diagonalizable such that |\| > 2 for every eigenvalue of
A. Show that there exists an invertible B € R™*" such that B + B~! = A.

b. Show that there is no invertible B € R3*3 such that B+ B~! = I;.

Exercise 4.24. Assume that n > 2.

a. Show that R™" = U &V, where U = {A e R™" : A=A} V={Ae R : A=

—A'}. Also show that dim U = M,dimV — "(”2_1)

b. Using the above, prove that the linear map
fiR™™ S R™" A A

is diagonalizable and find its characteristic polynomial.
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Exercise 4.25. Let f,g : V — V be two linear maps such that f is diagonalizable and every
eigenvector of f is an eigenvector of g. Show that f o g = g o f.

Exercise 4.26. Letay,--- ,ay, b1, - ,b, € [F such that the matrix
atby - arby,
A= : : e Fxn
apby - apby
is nonzero.

a. Show that rankA = 1.
b. Show that A is diagonalizable if and only if 7rA # 0.

Exercise 4.27. Show that the matrix

a b b b
b b b

A=10 b a b | e prxn,
b b b a

is diagonalizable.

Exercise 4.28. Let o € F and let 3 = (v1,v2,v3) be an ordered basis of F3. Consider the linear
map f : F3 — F3 defined by

f(v1) = v1, f(va) = 201 — avy — v3, f(v3) = a*va + avs.

a. Show that f is not diagonalizable.

b. Show that f™ is diagonalizable for every n > 2.

Exercise 4.29. Letn > 2. Letay, -+ ,an, b1, , b, € IF such that not all of them are equal to 0
n—1
and > a;b; = 0. Compute the characteristic polynomial of the matrix
i=1
0o 0 --- 0 ax
0o 0 .- 0 as
0o 0 --- 0 ap—1
by by -+ b1 O

and show that it is not diagonalizable.
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Exercise 4.30. Determine which of the following statements are true or false. Justify your answer.

a. There exists a diagonalizable linear map f : F* — F* such that x¢(z) = 2*(z — 3)? and
dimImf = 3.

b. For every a,b € R, the matrices <3 (5I> , <2 2) € R?*? are similar.

c. Let f: V — V be a linear map. If A £ p are two eigenvalues of f, then the linear map
g: V)&V = V) e Vp), gutv) = flutv),

is diagonalizable.

Exercise 4.31. Let A € F™*" with rankA = r. Prove that the characteristic polynomial of A has
the form
(—1)"z" 4+ ap_1z" P+ -+ ap_ 2"

Exercise 4.32. Let A € C?*2 and let \, ;1 be the eigenvalues of A. Show that if A # p, then for
every positive integer k,

)\k k

(A—plp) +

AF =
A— W= A

(A — \I).

Exercise 4.33. Let A € F"*" with rankA = 1 and n > 2. Prove the following statements.

a. A is similar to a matrix of the form

0 0 al
0 0 ag
0 0 a,

b. TrA # 0 < Ais diagonalizable.

Exercise 4.34. Consider the linear map f : Ro[x] — Ro[z] defined by f(22 +1) =z +1, f(z +
D=a+1f1)=a+1 Setg=f81+2.1,, V =Rya].

a. Find a basis for each eigenspace of f and each eigenspace of g.
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b. Determine whether f, g are diagonalizable.

¢. Determine whether f, g are isomorphisms.

Exercise 4.35. Let A = ((1) g) and let f : R?*2 — R2*2 f(X) = AX — X A. Determine

whether f is diagonalizable.

Exercise 4.36. If A1, Ao, A3, A4 are the eigenvalues of an invertible A € C**4, then the eigenvalues
of ade are )\1)\2)\3, )\1)\2)\4, )\1)\3)\4, )\2)\3)\4.

Exercise 4.37. Determine which of the following statements are true. In each case, give a proof or
a counterexample.

a. Every matrix that is similar to a diagonalizable matrix is diagonalizable.
b. If A € R4 with x4(z) = z(z + 1)(22 + 1), then A is diagonalizable.
c. If A € R with x4(x) = z(z + 1)(2% + 1), then A is diagonalizable.

d. Let A € R¥* with ya(z) = 2?(z — 1)(x — 2). Then A is diagonalizable if and only if
dim V4 (0) > 1.

e. If A, B € F™*" are diagonalizable, then A + B is diagonalizable.
f. If A, B € F™*™ are diagonalizable, then AB is diagonalizable.
g. Every invertible matrix is diagonalizable.

h. The dimension of the subspace generated by the eigenvectors of A = is at

* X X X
S O W o
* % ¥ %
=~ O O O

least 2.
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CHAPTER b

TRIANGULARIZABLE MATRICES

5.1 Triangularizable Matrices

Definition 5.1.1. A matrix A € F™*" is called triangularizable if there exists an invertible matrix
P € F™ " sych that P~ AP = T is upper triangular.

Example 5.1.1. The matrix < 1> , which is not diagonalizable (show why), is clearly triangu-

1
0 1
larizable, since it is upper triangular.

Observation 5.1.1. i. If A € F™*" is triangularizable, then y 4 () is a product of linear factors
in Flz].

ii. If A is diagonalizable, then it is also triangularizable.

Proof. i. A is triangularizable, i.e., there exists an invertible P € F"*™ satisfying
Al *x %
PTAP = SO
0 An

hence we conclude that
xa(®) = xp-1ap(®) = (A1 —2) - (A — 7).

83
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ii. This follows immediately from the definition. Attention! The converse is not true.

O]

Reminder 5.1.1. Let A, B, P € F"*" be matrices such that P~"'AP = B. The following are
equivalent:

i. PU is an eigenvector of A with eigenvalue \.
ii. B") = \E;, where {Ey,--- , E,} is the standard basis of F"*1.

Theorem 5.1.1. A matrix A € F"*" is triangularizable if and only if x 4(x) is a product of linear
factors.

Proof. 1f A is triangularizable, then y 4 (z) is a product of linear factors by Notation 5.1.1.

Conversely, assume that
xa(@) = (A —z)-- Ay — ).

We use induction on n.

« Base case. For n = 1, the claim is immediate.
« Inductive step. Assume the claim holds for matrices B € F(*»~1)*("=1) whose characteristic
polynomial is a product of linear factors.

Let u; € F™*! be an eigenvector corresponding to the eigenvalue \;. Then there exists a
basis of F"*! of the form

u={uy,...,up}.
Define the matrix P; whose columns are the vectors u;, 1.e.,

Then P; is invertible.

By Reminder 5.1.1, we obtain:

PLAP = <A01 §1> , By € Fin—Dx(n=1),

Moreover,
xa(@) = (A —2) - x5, (@),
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so x B, () is also a product of linear factors. Hence, by the inductive hypothesis, there exists
an invertible matrix P> such that

Py'BiP =T,
with T upper triangular.
Set
110
P=P-
1 O P2 )

which is invertible. Then:

P7'AP =

which is upper triangular.

Example 5.1.2. Consider the matrix

a=(2).

2 i.e. Ais triangularizable. By straightforward computations we find

Then x4(z) =z

Take any invertible P with
for example

Then we obtain
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Example 5.1.3. Consider the matrix

3 4 5
B=10 -2 1
0 —4 2

Using the previous example, where

1 [0 (21 (11
prar= (o) 4= (50 7= o)

and the idea of the proof of Theorem 5.1.1, we set

and
Consider a basis of R**! that contains

for example

1 0 0
1], (1].(o
0 0 1
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Set

e

Il
S ==
S = O

which is invertible, and

where

Continue similarly with By, where xp, (z) = (z — 4)? and

VB1 (4)

I
/\
7 N\
_ =
N———
\/

by setting
Then P is invertible and

Finally, if
10
P=P [0 1
0 1

then P is invertible and moreover

4 % x
P'AP=(0 4 =
0 0 4
Example 5.1.5. Consider the matrix
0 0 =3
A=|-1 3 1
1 0 4

with xa(z) = (1 — 2)(3 — x)2.

Method A
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We compute that

Thus we consider the matrix

3 00
P=12 1
-1 0 1
3 0
which is obtained by extending the set 2 1,11 to a basis of R3*!. Then we know that
-1 0
1 *
P'AP=[0 3 «
0 0 3
Method B

Observe that A?) = 3F,. Hence Es is an eigenvector of A with eigenvalue 3. Then we follow
the idea of the proof as before. In summary, set

010
P=11 00
0 01

Then
3 *x %
Pr'APL=(0 0 -3
01 4
Setting

0 -3
Bl_<1 4)’

we have x, () = (z — 1)(z — 3), hence B is diagonalizable. Moreover,

v =(( %)) m@=((}))
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For

we have

Finally, setting

1 0 0
P=P |0 3 11,
0 -1 -1
we obtain
3 * %
PtAP=1[01 0
0 0 3

5.2 Triangularizable Linear Maps

Definition 5.2.1. A linear map f : V' — V is called triangularizable if there exists an ordered
basis v of V' such that the matrix (f : 0, 0) is upper triangular.

Observation 5.2.1. Let f : V' — V/, let a be an ordered basis of V, and let A = (f : a,a). The
following are equivalent:

i. f is triangularizable.

ii. A is triangularizable.

iii. x(x) is a product of linear factors.

Proof. * i. <> ii. This follows immediately from Theorem 1.2

* ii. ¢ iii. This follows from Theorem 5.1.1 and the fact that x s (x) = xa(x).

Example 5.2.1. Let
fiRY RS f(z,y,2) = (22,2 +y + 22,ay + 2).

Show that f is triangularizable if and only if a > 0.
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Proof. We observe that

2 00
A= (f:é,¢)=1[1 1 2|,
0 a 1
hence:
2—x 0 0
Xf(z) = xa(x) = det 1 1—-z 2
a 1—=x
Therefore:

xf(@)=(2-2)-[(1-2)*—2a] = (2—2)(2® — 22+ 1 — 2a).

The map f is triangularizable if and only if x s () factors into linear factors over R, i.e. if the
discriminant of the quadratic factor is nonnegative:

A=4-41-2a)=81>0&a>0.

Reminder 5.2.1. Let T" be upper triangular, i.e. of the form

t1 *
T= :
0 tn
By induction one has
t'f *
TF = . , foreveryk > 1.
0 tk

More generally, for every ¢(x) € Flx],

i.e. it is also upper triangular.
Theorem 5.2.1 (Spectral Mapping). Let A € F"*" with
xa(@) =M —xz)--- (A — ).
Then for every ¢(z) € Flz] we have:
Xp(a)(®) = (p(A1) =) - (e(An) — 2) .
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Proof. Let p(z) € Flx]. Since xa(zx) = (A1 — ) --- (A, — ), the matrix A is triangularizable,
i.e. there exists P € F™*" such that

t1 *
PlAP =T =
0 tn

Also, o(T) = P~1p(A)P. From this relation and Reminder 5.2.1 we get:

Xo(T)(T) = Xp(a)(2) = (p(t1) — ) -~ (p(tn) — 7),

where each ¢; is an eigenvalue of A, fori =1,2,..., n. ]

5.3 Cayley-Hamilton Theorem

2

Motivation. Let A € F"*". We know that dim F**" = n? and the number of matrices I,,, A, A%, ..., A"
is n2 + 1. Hence they are linearly dependent, i.e. there exist ag, a1, . .., a,2 € F, not all zero, such
that

anzA”2 + -+ +apl, =0.

Setting ¢(z) = a,22™ + - - - + ag, we obtain a nonzero polynomial with ¢(A) = 0.

_ Al * nxXn
A_<0 A2>EF

Observation 5.3.1. Let

with A; € F"*™ and ny 4+ ny = n. Then, by induction,

A™ %
A™ = ( 01 AT) , foreverym > 1.

Consequently, for every p(z) € Flz],

o= ("5 )

Theorem 5.3.1 (Cayley-Hamilton for matrices). Let A € F"*" with
xa(@) = (=1)"2" + an_12™ "+ - + aq.

Then:
XA(4) = (“1)"A™ 4 g 1A 4o agL, = 0.
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Proof. The proof is split into two steps:

Step A. If A € C"*"™, then it is similar to an upper triangular matrix 7". That is, there exists an
invertible P such that:

A= PITP.
Hence:
xA(4) = x7(A) = xp(P~'TP) = P~'xq(T)P.
It suffices to show that
XT(T) =0,

i.e. to prove the claim in the special case where the matrix is upper triangular.
Step B. We use induction on n.
* Base case. For n = 1 the theorem is obvious.

* Inductive step. Assume it holds for every upper triangular matrix of size (n — 1) x (n — 1).

(A
(5 1)

where T is upper triangular of size (n — 1) x (n — 1) and

Let

xr(r) = (M — ) - x (@).
Thus:
xr(T) = (Ml = T) - x1, (T).

We have:

xr(T) = <8 )\I]In_t _ T1> <XT1(())\1) XT1>ET1)> '

By the inductive hypothesis, x, (71) = 0, hence:

0 * x %
xr(T) = <0 AL, —T1> <0 0) =0

Observation 5.3.2. If € F[z], A € F™*™ with p(A) = 0 and A is an eigenvalue of A, then ¢ (\)

is a root of the polynomial ¢(x). Consequently, if A* = 0, then every eigenvalue A of A (in C) is
0.
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Proposition 5.3.1. Let A € F"*". The following statements are equivalent:

i. A" =0,
ii. AF =0 forsome k > 1,

iii. Every eigenvalue of A in C is 0.

Proof. * i. = ii. Obvious, since A" = 0.

* ii. = iii. By Notation 5.3.2, every eigenvalue of A is a root of the annihilating polynomial,
hence it must be 0.

« iii. = i. If all eigenvalues of A are 0, then x 4(z) = (—1)"z". By Theorem 5.3.1 we get
xa(A4) = (-1)"A" =0,

thus A™ = 0.

Theorem 5.3.2 (Cayley-Hamilton for linear maps). Let f: V' — V be alinear map and let x ¢(z) =
(=1)"2™ + - - - + ag be its characteristic polynomial. Then:

Xr(f) = (=1)"f" + - +ag-1y =0,

Proof. Let v be an ordered basis of V and A = (f : 0,0). We know that for every ¢(z) € F|x]:
(e(f) : 0,0) = p(A).
For p(x) = xf(x) = xa(z), by Theorem 5.3.1 we have x 4(A) = 0, hence:

(xs(f):0,9) = 0= xs(f) = 0.
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5.4 Exercises of Chapter S.

Group A: 1,2,3,4,5,6,7,11,14,23,28 34
Group B: 8.9,12,13,15,16,17,18,19,20,21,22,24,25,31,33,35
Group C: 10,26,27,29,30

Exercise 5.1. Prove that if A € R?>*? has at least one real eigenvalue, then A is triangularizable.

Exercise 5.2. a. Let A = :Z ;) € C2%2, After showing that A is triangularizable, find an
invertible U € C2*2 such that U~ AU is triangular.
3 4 5
b.Let A= [0 —2 1| € R3*3. After showing that A is triangularizable, find an invertible
0 —4 2
U € R3*3 such that U~ AU is triangular.
2 2 0
c. Let A= [ -1 —2 1] € R3*3. After showing that A is triangularizable, find an invert-
0 5 1

ible U € R3*3 such that U~ AU is triangular.

Exercise 5.3. Find the values of a for which the matrix

4 a 2%2
<3 3> <R

is triangularizable but not diagonalizable.

Exercise 5.4. Let

1 1 -1
A=[-1 3 —1] e R®*3.
-1 2 0

a. Find the characteristic polynomial and the dimensions of the eigenspaces of A.
b. Is A diagonalizable?

c. Is A triangularizable? If yes, find an invertible U such that U ' AU is triangular.
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Exercise 5.5. Let {v1,v2,v3} be a basis of R, let @ € R, and let f : R3 — R3 be the linear map
such that f(v1) = 2v1, f(v2) = vy + vy + 2vs, f(v3) = ave + vs. Show that f is triangularizable
if and only if @ > 0.

Exercise 5.6. Show that there exist infinitely many matrices A € R?*2 such that A2—5A+615 = 0.

Exercise 5.7. Let A € R3*3 with y4(x) = —23 4 x. Show that for every positive integer k:

a. A" is diagonalizable, and

b. A% = A2 and A%+ = A,

Exercise 5.8.  a. Let A € C™*" with eigenvalues A, - - - , A,. Then for every k > 1, Tr(A*) =
A4 AR

b. Let A € R™*" be a triangularizable matrix such that Tr(A?) = 0. Show that A" = 0.

c. Let A € C"*" such that Tr(A) = Tr(A?) = --- = Tr(A"" 1) = 0. Show that if Tr(4A") # 0,
then A is

* diagonalizable and

¢ invertible.

Exercise 5.9. Let A € F"*". Show that the following are equivalent:

a. Every eigenvalue of A in C equals 0.
b. A¥ = 0 for some positive integer k.

c. A" =0.

d. Tr(A) = Tr(A?%) = ... = Tr(A") = 0.

Exercise 5.10. Let A, B € F"*™ such that AB — BA = A. Prove that A™ = 0.

Exercise 5.11. Let A € C"*" be invertible. Show that if x4 = (A} —x)--- (A, — ), A\; € C,
then
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Exercise 5.12. LetdimV =nandlet f : V — V be a linear map.
a. Show that f is triangularizable if and only if for each ¢ = 1,--- ,n there exists a subspace
W; <V withdimW; =4, W; C Wy C ... C W,,and f(W;) C W,.
b. Is it true that f is triangularizable if for each ¢ = 1,--- | n there exists a subspace W; < V

with dim W; = 7 and f(WZ) CcC wW;?

Exercise 5.13. Let A € <",

a. Show that if A is not invertible, then there exists f(z) € F[x] of degree n — 1 such that
Af(A) = 0.

b. Show that if A is invertible, then there exists f(x) € F[x] of degree n — 1 such that A~! =
f(A).

Exercise 5.14. Let

2 -1 -1
A=10 -2 —1| eRr®*3,
0 3 2

a. Express A~! as a linear combination of I3, A, A%
b. Prove that A%2" — 2A42"~1 = A% — 2 A for every positive integer n.

c. Find a polynomial ¢(x) € R[z] of degree at most 2 such that A% — 2A4% +2a + 315 = ¢(A).

Exercise 5.15. Let A € R™*" suchthat x 4(z) = (—1)" (2" —2™ — 2" ™ +1), where 0 < m < n.
Show that there exists a positive integer v such that A™ is triangularizable.

Exercise 5.16. Let A € C™*"™ be a non-diagonalizable matrix. Then A is similar to a matrix of the
form Al
0 )

Exercise 5.17. Let A, B € F"*" satisfy AB = BA = 0. Show that x4(A + B) = xa(B) —
det (A) - I,,.
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Exercise 5.18. If A = (a;;) € F"*", define h(A) = > aija;i.
2%

a. Show that if A, B are similar, then h(A) = h(B).

b. LetF = C. Show that h(A) = A2 + - - + A2, where A1, - -+ , \, € C are the eigenvalues of
A.

Exercise 5.19. Show that every upper triangular matrix A € F™*™ is similar to a lower triangular
matrix. Then show that every matrix B € C"*" is similar to a lower triangular matrix.

Exercise 5.20. Let A € R™*" such that A™ = I,,. Show that —n < TrA < n.

Exercise 5.21. Let V' be a C-vector space and let f,g : V — V be two linear maps such that
fog=go f. Prove the following.

a. If X is an eigenvalue of f, then g(V(\)) C V¢(A).

b. The maps f, g have a common eigenvector.

c. There exists an ordered basis of V' such that the corresponding matrices of f, g are upper
triangular.

d. Forevery eigenvalue A of f — g there exist an eigenvalue A; of f and an eigenvalue A, of g
such that A\ = Ay — Ay.

Exercise 5.22. Let A, B € C™*™, Consider the linear maps

Ly : C™ — € La(X) = AX,

Rp : C™™ — C™", Rp(X) = XB.

a. Showthat Ly o Rg = Rgo L.

b. Show that L 4 has the same eigenvalues as the matrix A and that R 5 has the same eigenvalues
as the matrix B.

c. Assume that A, B have no common eigenvalue. Show that for every C' € C™*" there exists
aunique D € C"*" such that AD — DB = C.
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Exercise 5.23. Let A € F™*" and let W4 be the subspace of F"*" generated by I,,, A, A2, --.
Show that for every k > 0, A"t* ¢ (I,,, A, A%,--- , A"~1) and hence dim W4 < n.

Exercise 5.24. Determine which of the following statements are true. Justify your answers.
a. Let A € R with ya(z) = (22 + 1)(z + 1)2. Then the matrix A" is triangularizable if
and only if n is even.

b. For every A € F"*" there exists a polynomial ¢(x) € F[z] of positive degree such that
¢(A) = I.

Exercise 5.25. Let A € F"*™ with rankA = 1. Prove the following statements.

a. A2 =Tr(A)- A.
b. A" =0« Tr(A) = 0.
c. A is triangularizable.

d. Tr(A) # 0 < A is diagonalizable. (see Exercise 3.26).

Exercise 5.26. Let A, B,C, D € F™*" such that A°‘C' = B'D for every i > 1. Prove that if A, B
are invertible, then C = D.

Exercise 5.27. Let A € C"*" and let f4 : C"*™ — C"*" be the linear map defined by f4(B) =
AB — BA. Show that if every eigenvalue of A equals 0, then every eigenvalue of f4 equals 0.

Exercise 5.28. Let V' be a real vector space of dimension 3, let @ = {v1,v2,v3} be an ordered
basis of V, and let ¢ € R. Consider the linear map f : V' — V defined by f(v1) = 2va, f(v2) =
—v1 + 302, f(vg) = cv1 + v + vs.

a. Find all values of ¢ for which f is triangularizable.

b. Find all values of ¢ for which f is diagonalizable.

c. For ¢ = 0 find a basis for each eigenspace of f and a basis of V' generated by eigenvectors
of f.
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Exercise 5.29. If A € R™ " is triangularizable and Tr(A?) = Tr(A3) = Tr(A*) = ¢, then
c € Z>o and Tr(A*) = c for every positive integer k.

Exercise 5.30. Let A € C"*™ and B € C™*™ have no common eigenvalue. Show that there is no

nonzero X € F"*™ with AX = XB.
011

Exercise 5.31. Let A= [0 0 1] € C3>*3. Show that for every m > 3 there isno B € C3*3
000

with B™ = A.

Exercise 5.32. Let A, B € C"*" with (AB)" =0, n > 1. Then (BA)" = 0.

Exercise 5.33. If A € C™*" has at most one nonzero eigenvalue, then det (1,, + A) = 1+ Tr(A).

Exercise 5.34. Let A, B € C™"*". Show that the matrix x5 (A) is invertible if and only if A, B
have no common eigenvalue.

Exercise 5.35. Determine which of the following statements are true. In each case give a proof or
a counterexample.
a. Let A be an invertible matrix. Then A is triangularizable if and only if A~ is triangularizable.
b. If A € F™*" is triangularizable, then ¢(A) is triangularizable for every ¢(x) € F[z].
c. Let A € R™ ™ If A? is triangularizable, then A is triangularizable.
d. If A € R3*3, then there exists an invertible U € R3*3 with U~ AU upper triangular.

e. If A € R3*3, then there exists an invertible U € R3*3 with

A % %
UAU =0 * =
0 * *
f. If A € R3%3 is of the form
* 0 %
A=|x -5 =«
* 0
then there exists an invertible U € R3*3 with

—5 % %

UAU = 0 =« x
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g Let A € RY with ya(7) = (x — 1)?(x — 2)(x — 3). Then A is triangularizable and not
diagonalizable if and only if dim V(1) = 1.

h. Let f : V — V be a triangularizable linear map and let U < V be a subspace such that
f(U) C U. Then the restriction of f to U is a triangularizable map.



CHAPTER O

MINIMAL POLYNOMIAL

6.1 Minimal Polynomial

Motivation. If A € F"*", then there exists a polynomial p(z) € F[z], with ¢(z) # 0, such that
©(A) = 0. For example, by the Cayley—Hamilton Theorem we have x 4(A) = 0. Our goal is to
find the monic polynomial of smallest degree that annihilates A.

Definition 6.1.1. Let A € F"*". The minimal polynomial of A, denoted by m 4(x), satisfies:

i. ma(x) is monic,
ii. my(A) =0,
iii. m4(z) has minimal degree among polynomials satisfying (i) and (ii).

Observation 6.1.1. For every A € F"*" there exists a polynomial satisfying the properties of
Definition 6.1.1, and moreover it is unique.

Proof. » Existence. Consider the set

S = {p(x) € Fla] | o(x) # 0 and o(A) = 0}

The set S is nonempty, since by Theorem 5.3.1 we have y4(A) = 0. Choose a polynomial
¢(x) € S of minimal degree. If 7 is the leading coefficient of (), then r~1 () also lies
in S, is monic, and has minimal degree.

101
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+ Uniqueness. Let m4(x) and m/,(z) be two monic polynomials that annihilate A and have
minimal degree. If m 4(x) # m/y(x), then the difference

is a nonzero polynomial of degree strictly smaller than deg(m 4) and it also annihilates A.
Then
r~Ymy —my)

(where 7 is the leading coefficient) is monic, annihilates A, and has smaller degree—a con-
tradiction. Hence

ma(x) = m/y(x).

Properties 6.1.1. Let A € F"*",

i. If o(A) = 0 for some ¢(x) € Flz|, then ma(x) | p(z). In particular, m4(z) | xa(x).

ii. Every eigenvalue of A is a root of m 4 (). Every root of m4(x) is an eigenvalue of A. That
is, m4(x) and x 4 () have the same roots (ignoring multiplicities)."

Proof. i. By Euclidean division, there exist polynomials ¢(z),r(z) € F[z] such that
o(x) = q(x) ma(x) + r(x), where either degr(x) < degma(x) or r(z) = 0.

Then
p(A) = q(A) ma(A4) +r(A) = r(4).

Since p(A) = 0, we get 7(A) = 0. If r(x) # 0, then ¢~ 1r(z), where c is the leading coeffi-
cient of 7(), is monic, nonzero, satisfies 7(A) = 0, and has degree smaller than deg(m 4)—a
contradiction. Hence r(z) = 0, i.e. ma(z) | ¢(x).

In particular, for ¢(x) = xa(x), by Theorem 5.3.1 we have x4(A) = 0, hence ma(z) |
xA(x).
ii. Let A € Fand X # 0 such that AX = AX. We know that for every ¢(x) € Flx],
p(A)X = p(N)X.
In particular, for p(z) = m4(x) we obtain

ma(A)X =ma(N)X =0.

"For example, it could happen that x4 (z) = —(z — 1)*(z — 2) and ma(z) = (x — 1)(x — 2). It cannot happen
that ma(z) = (x — 1)? or ma(z) = (z — 1)*(z — 2)(x — 3).



Linear Algebra II Konstantinos Bizanos

Since X # 0, it follows that m4(A) = 0. Thus every eigenvalue of A is a root of m 4(x).
The converse follows immediately from (i), since m 4 () | xa(x).

O
Example 6.1.1. Consider the matrices

() o)

xa(@) = (z = 1)(z = 2) = xp(2),

We observe that

Then
ma(z) = (z —1)(z - 2)
because
ma(z) | xa(@) = (z - 1)(z - 2)

and it has the same roots. Similarly,

mp(x) = (z —1)(x —2).
Example 6.1.2. Let the matrices be

A:

O O N

1
2
0

N O =
W
I
S O N
SN =
N = O

We observe that y 4(x) = —(z — 2)3, hence
ma(z) € {z -2, (z-2)%, (z-2)°}.

We have:
01 1
A=2I3=(0 0 0] #0, (A—-2I3)%=0=ma(x)=(z—2)>
000
For the matrix B:
010 001
B-2I3=(0 0 1|#0, (B-2I3*=]0 0 0] #0

0 0 000

Therefore



Konstantinos Bizanos Linear Algebra II

Pay special attention to this example!

Example 6.1.3. Let

3 -1 0
A=10 2 0] eRrR¥3,
1 -1 2

a. Find p(x) € R[z] with deg p(x) < 1 such that A=1 = ¢(A).
b. Find ¥(v) € R[z] with degt(x) < 1 such that A* + A — 2[5 = ¢(A).

Proof. First we find m (). We have x4(z) = —(x — 2)?(x — 3), hence:
ma(z) = (x —2)*(x—3) or mau(z) = (z—2)(z —3).
We compute:
(A —2I3)(A—3I3) = 0= ma(z) = (x — 2)(z — 3) = 22 — b + 6.

a. Since 0 is not an eigenvalue of A, it follows that A is invertible. From m4(A) = 0, i.e.
A? —5A + 6I3 = 0, solving gives

A7l = —£(A = 5l) = ple) = — 5w — 5).

b. By Euclidean division of 2* + 2 — 2 by ma(x) = 22 — 52 + 6, we have
o+ o — 2= (2% 4+ 52 +19)(2? — 5z + 6) + 662 — 166.

Hence
At 4 A - 2I3 = 66A — 16613 = () = 66z — 166,

since m4(A) = 0. O
Proposition 6.1.1. Similar matrices have the same minimal polynomial.

Proof. Let A, B € F"™" with B = P~' AP, where P € F"*" is invertible. For every ¢(z) € F[z]
we have
p(B) = Pl p(A)P.

Hence ¢(A) = 0 if and only if ¢(B) = 0. Therefore m4(x) = mp(z). O
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Proposition 6.1.2. If A € F"*" with

A= (? (Oj'>’ where B € F"*" O € F™*™  n = ny + no,

then
ma(z) = lem(mp(z), me(x)).

Proof. Since

Setting p(x) = ma(x) we get

) = ("5 ) =0

hence m4(B) = 0 and m4(C) = 0. Therefore

mp(z) | ma(z) and me(z) | ma(z) = lem(mp(z), mc(z)) | ma(z).

Define ¢)(x) = lem(mp(z), mc(x)). Then

s = ("7 &) o

so ma(z) | ¥(z). Since both are monic, we conclude

Observation 6.1.2. If
A - 0
A=+ .. | eF™" where A; € F"*™ nq+---+n,=n,
0 --- A
then
ma(z) = lem(may, (z),...,ma, (x)).
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Proof. This follows immediately from Proposition 6.1.2 and induction on k. O

Corollary 6.1.1. Let A = diag(A1, -+ , A1, , A, -, Ag) with A; # A; forall ¢ # j. Then
ma(x) = (x— A1) (z — Ag).

Proof. This is immediate by applying Notation 6.1.2 to A; = \;1,,. O

Observation 6.1.3. Let A € F"*" be diagonalizable, i.e. similar to a diagonal matrix. By Propo-
sition 6.1.1 and Corollary 6.1.1, the polynomial m 4 (z) is a product of distinct linear factors.

Example 6.1.4. Consider the matrix

N~
w =

w N
o O

Sl

Equivalently, write A = % with
4 1 2 0
B= <2 3> , C= (3 0> ’

By computation we find
mp(x) = (z —2)(x = 5), mc(z) =x(x—2).
By Proposition 6.1.2,

ma(x) = lem(mp(x), mc(z)) = z(x — 2)(z — 5).

Example6.1.5. Let A = %‘% . Then in general it is not true (why?) thatm 4 (x) = lem(mp(z), mc(x)).

What is always true is that lem(mp(x), mc(x)) | ma(x).
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6.2 Diagonalizability Criterion

Motivation. Let A be diagonalizable. Then A is similar to a diagonal matrix
D =diag( A, - AL Ay k)
with \; # A; for ¢ # j. By Proposition 6.1.1 and Corollary 6.1.1 we have
ma(r) = (z = A)(@ = A2) - (2 = M),
i.e. a product of distinct monic linear factors in [F[x]. We will show that the converse also holds.

Theorem 6.2.1 (Diagonalizability criterion via m 4(x)). Let A € F™*™. Then A is diagonalizable
if and only if m 4 (x) is a product of distinct monic linear factors in F[z].

Proof. 1f A is diagonalizable, the claim follows immediately from Corollary 6.1.1.

Conversely, assume
ma(z) = (@ = A1)~ (@ — M)

with A\; # A; for ¢ # j. We know the distinct eigenvalues of A are precisely the \;, i = 1,... k.
We will show that
Frxl — VA()\l) + VA()\Q) + -+ VA()\k)-

Define the following polynomials:”

Then
ged(aq(x), ..., ax(x)) = 1.

Hence there exist b;(x) € F[x] such that

Therefore

ZFor example, for k = 3: a1(x) = (x — Xo)(z — A3), a2(z) = (z — A1) (x — A3), as(x) = (z — A1) (z — \2).
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i.e. for every X € F"*! we have

Claim: Foreachi =1,...,k, we have a;(A)b;(A)X € Va(\).

Indeed, note that

since (z — A;)a;(x) = ma(z). Hence each term a;(A)b;(A) X lies in the corresponding eigenspace
Va(Ni).

Thus

k k
anl QZVA()\Z):]anlzsz()\z),
i=1 =1

and by Theorem 4.2.1, the matrix A is diagonalizable. O

6.3 Minimal Polynomial of a Linear Map

Definition 6.3.1. Let f: V — V be a linear map and let @ be an ordered basis of V. Define
my(x) = ma(x), where A = (f : G,a). The polynomial m s(x) is called the minimal polynomial
of f.

Observation 6.3.1. Since similar matrices have the same minimal polynomial, the definition of
ms(x) does not depend on the choice of a.

Properties 6.3.1 (Minimal polynomial of a linear map). Let f: V' — V be a linear map. The
following hold:

i. mys(x) is monic, m¢(f) = 0, and among polynomials with these properties it has minimal
degree.

ii. If o(f) = 0with p(z) € Flz], then mys(x) | ¢(z). In particular, m¢(x) | x¢(x).
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iii. Every eigenvalue of f is a root of m (). The polynomials m¢(x) and x s (x) have the same
roots.

iv. The map f is diagonalizable if and only if m¢(x) = (x — A1)(z — A2) - (x — A) with
)\i 75 )‘j for ¢ 75]

Proof. These properties follow immediately from the corresponding results for matrices. As an
illustration we prove property (i).

Let A= (f : a,a). We know that for every p(z) € F[z],
p(A) = (p(f) : a,a)
by Proposition 2.4.1. Hence
(my(f) = a,a) = mg(A) = ma(A) =0,

so mg(f) = 0. Since ma(x) is monic and has minimal degree, the same is true for m(z) by
definition. O

6.4 Simultaneous Diagonalization

Question 6.4.1. Let A, B € F™*" be diagonalizable. Then there exist invertible P4, Pg € F"*"
such that PXIAPA and Py ! BPpg are diagonal. When does there exist a common invertible P such
that P~' AP and P~ BP are diagonal?

Observation 6.4.1. Assume such a P exists, i.e. P is invertible with P~ AP = A 4 diagonal and
P~'BP = Ap diagonal. Then A = PA 4P~ and B = PAgP~!, and we observe that
AB = PA,AgP™! and BA=PAgA, P

Since A4, Ap are diagonal, we have AyAp = ApAy, ie. AB = BA. We will show that the
converse also holds. We study the corresponding problem for linear maps.

6.4.1 Invariant Subspaces

Definition 6.4.1. Let f: V' — V be a linear map. A subspace U < V is called f-invariant if
f(U) CU,ie. forevery u € U we have f(u) € U.
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Example 6.4.1. Let f: V — V be a linear map.

i. The subspaces {0} and V" are f-invariant.
ii. The subspaces ker f and Im f are f-invariant. Indeed:

e Ifu € ker f, then f(u) =0 € ker f.
 Ifv € Im f, then there exists u € V suchthat f(u) = v, hence f(v) = f(f(u)) € Im f.

iii. Every eigenspace V() is f-invariant. Indeed, if u € V¢(\) then f(u) = Au € Vy(A).
iv. If Uy, Us <V are f-invariant, then Uy + Uy is also f-invariant.

v. The sum of f-invariant eigenspaces is f-invariant.

vi. Let f: R? — R? with f(z,y) = (2, z +¥).

* f(ea) = ez and f(e1) = e1 + ea, where e1, e3 is the standard basis of R2.

* Hence (eg) is f-invariant, while (e;) is not (show why).

vii. IfU <V withdimU = 1, then U is f-invariant if and only if U = (u) for some eigenvector
u of f (show why).

Observation 6.4.2. Let U be f-invariant. Then f(U) C U, so the restriction of f to U, denoted
by fu, is the linear map

fu:U—=U, fulu)=f(u), foreveryu e U.

Proposition 6.4.1. Let f: V — V be a linear map and let U be an f-invariant subspace of V. If f
is diagonalizable, then the restriction f;: U — U is also diagonalizable.
Proof. By Property 6.3.1(iv), if f is diagonalizable then

my(x) = (x — A1) (&= Ag), with A\; # \j fori # j.

We claim that my,, (z) | m¢(x). If so, then m, (x) is also a product of distinct linear factors, hence
fu is diagonalizable by the same property.

Indeed, for every u € U we have

my(fu)(u) = mys(f)(u) = 0.
Hence my, (x) | my(z). O
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6.4.2 Simultaneous Diagonalization

Theorem 6.4.1. Let f,g: V — V be linear maps. The following are equivalent:

i. There exists a basis of IV whose elements are eigenvectors of both f and g.

ii. The maps f and g are diagonalizable and, moreover, f o g =go f.

Proof. * i. = ii. Assume there exists a basis {v1, ..., v, } of V with f(v;) = A\jv; and g(v;) =
w;v; for each ¢, where \;, u; € F.

We claim that f o g = g o f. Indeed,

(fog—gof)vi) = flgvi)) —g(f(vi)) = f(pivi) — g(Xivi)
= pif(vi) = Xig(vi)
= AV — AifhiV;
= 0.
Thus f o g = g o f. Finally, by Theorem 4.3.1(ii), it follows that f and g are diagonalizable.

* ii. = i. Since f is diagonalizable, we have
V=Vi(M) + -+ Vi),

where \; are the distinct eigenvalues of f.

We claim that if f o g = g o f, then each V;()\;) is g-invariant. Indeed, let v € V¢ (\;), i.e.
f(v) = A\jv. Then

9(f(v)) = g(hiv) = Xig(v) = f(g(v)) = Aig(v) = g(v) € Vi (Ni).

Hence V¢ ()\;) is g-invariant.

Let g; be the restriction of g to V¢(\;). Since g is diagonalizable and V¢ ();) is g-invariant,
Proposition 6.4.1 implies that g; is diagonalizable. Therefore there exists a basis B; of V(\;)
consisting of eigenvectors of g. Since B; C Vy(\;), each element of B; is also an eigenvector
of f.

Letting B = Ule B;, we obtain the desired basis of V', whose elements are eigenvectors of
both f and g.

O]

3The point is that dim >°F_, Vy(\;) = S, dim Vj(\:), hence dim V = 3, | Bi.
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Let us see why the corresponding statement holds for matrices. Consider the linear maps
Ly, Lp: Ft 5 ol LA(X) = AX, Lp(X)=BX.

If Theorem 6.4.1(i) holds, then there exists a basis B of F"*! whose elements are eigenvectors of
L A and L B.

Hence L4 and Lp are diagonalizable and L4 o Lg = Lp o L4. This is equivalent to saying
that the matrices A and B are diagonalizable and AB = BA, since

BA = (Lp:E,E)-(Ls:E,E)
= (LpolLs:E,E)
= (LaoLp:E,E)
= (La:E,E)-(Lp:E,E)= AB.



Linear Algebra II Konstantinos Bizanos

6.5 Exercises of Chapter 6.

Group A: 1,2,3,4,5,7,10, 12, 15, 16, 17, 18, 19, 21, 30, 32, 36
Group B: 6, 8,9, 11, 13, 14, 20, 22, 23, 24, 26, 28, 29, 31, 33, 34, 35, 37
Group C: 25, 27, 38, 39, 40

€ R3%3,

[y

2 2
Exercise 6.1. Let A= |1 3
1 2

a. Find the minimal polynomial of A.
b. Determine whether A is diagonalizable.
c. Show that A is invertible and find () € R[z] of degree at most 1 such that A~1 = ¢ (A).

d. Find ¢(z) € R[] of degree at most 1 such that A* = (A).
Exercise 6.2. Compute the characteristic and minimal polynomials of
210 210
A=10 2 0|, B=|0 2 1| eF>3
0 0 2 0 0 2
and determine whether A and B are similar.

Exercise 6.3. Let © = (v1, v2, v3) be an ordered basis of R? and
f:R3 = R3, f(xvy +yvg + zv3) = Bz + y)v1 + 2y + 2)va + (—x — y + 2)vs.

Find the minimal polynomial of f and determine whether there exists an ordered basis 7 of R? such
that (f : 4, u) = A, where A is the matrix from the previous exercise.

Exercise 6.4. Consider the linear map f : Ry[z] — Ra[z] defined by f(¢(x)) = ¢'(z) — 2p(z).

a. Find the minimal polynomial of f and determine whether f is diagonalizable.

b. Find the dimension of each eigenspace of f.

Exercise 6.5. Let A € C"*" such that (A + 3,,)(A —4L,,)(A+ 7L,) = 0. Determine whether A is
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a. diagonalizable,

b. invertible.

Exercise 6.6. Determine all A € R3*3 such that A% — 342 +2A = 0 and Tr(A) = 6.

Exercise 6.7. Find the characteristic polynomial and the minimal polynomial of

c R5><5

b

Il
coocowN
o o oo
o whk OO
cun oo
N o oo o

Determine whether A is diagonalizable.

Exercise 6.8. Let n > 1. Find the minimal polynomial of the linear map
f . ann — ann, f(A) — At

and determine whether it is diagonalizable.

Exercise 6.9. If f : V — V is a linear map such that f3 = f, then every v € V can be written
uniquely as v = v_1 + vg + v1, where vy, € ker(f — Al,,) for A = —1,0, 1.

Exercise 6.10. Show that m 4(x) = m ¢ (x) for every A € F"*".

Exercise 6.11. Let F"*" and let W4 be the subspace of F"*" generated by the matrices A" with
n > 0. Show that dim Wy = degm 4(x).

Exercise 6.12. Let A, B,C € F™"*™ and let

_ A B 2nx2n
b= (4 B) crman

a. Show that if D is diagonalizable, then A and C' are diagonalizable.

b. Does the converse of (a) hold?
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Exercise 6.13. Find the minimal polynomial of

11 1
] c ann.
11 1

Exercise 6.14. Show the following.

a. Ifdegma(z) = deg xa(z), then ma(z) = (—1)"xa(x).

b. We have m(z) = 2™ — 1 and mp(x) = (x — 1)", where

01 00 0 1100 --- 0
0010 0 01 10 0
0001 -0 o011 -0
A= . .. |, B=1. . . . | e FT
00 00 0000 1
1 0 00 0 0 00O 1
Exercise 6.15. Let
1 0 00
. a 1 0 O Ax4
A=l a 2 o R
c e f 2
Prove that A is diagonalizable if and only if a = f = 0.

Exercise 6.16. Let

a. Find the values of k such that degm 4 (z) < 2.
b. For the value of k found above, compute A~! using m4(z).

c. Show that A™ is not diagonalizable for every positive integer m.
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Exercise 6.17. Find the values of ¢ € R such that the polynomial (z — 3)!821 (21821 — 52 + ¢) is
annihilated by the matrix

1 0 O
A=|3 1 -1
-6 0 3

Exercise 6.18. Let f : R” — R" be a linear map with m¢(z) = z(z — 1) Find all a,b,c € R
such that f1821 4 af2 + bf + ¢ - 1gn = 0.

Exercise 6.19. Let
a

a O
A=10 1 0 | e rR®*3.
0 a -1

For each of the following cases find all values of @ € R (if any) for which the stated property holds.

a. There exists an invertible matrix P € R3*3 such that P~ AP is upper triangular.
b. There exists an invertible matrix P € R3*3 such that P~ AP is diagonal.

c. The matrix A is annihilated by the polynomial (z — 1)(z — 2) - - - (x — 2010).

Exercise 6.20. Let A € C™*" such that A™ = I, for some positive integer m and Tr(A) = n.
Prove that A = I,,.

Exercise 6.21. Let A, B € R?*? with A # Iy, B # —Ip,and A> — A2 4+ A1, =0, B3 + B +
B+1,=0.

a. Show that A and B have the same minimal polynomial.
b. Do they have the same characteristic polynomial?

c. Determine whether A and B are triangularizable.

Exercise 6.22. Let A € R3*3 with A2 — 94 + 20I3 = 0. Show that exactly one of the following
cases holds:

A = 4I3 or A = 513 or A is similar to diag(4, 4, 5) or A is similar to diag(4, 5, 5).
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Exercise 6.23. Let A; € R33,i = 1,--- |5, with A? — 94; + 20I3 = 0. Show that two of the
matrices A; are similar.

Exercise 6.24. Let f, g : V — V be linear maps such that

ged(my(x). my(x)) = 1.

a. Show that the linear map mg(f) : V' — V is an isomorphism.

b. Show that if ker f # {0y}, then kerg = {0y }.

Exercise 6.25. Let

0 0 0 —ag
00 0 —ai

A=10 0 0 —asg c Frxn,
00 --- 1 —ap_

In Exercise 3.17 we saw that x4(z) = (—=1)"(2™ + ap—12" "L + - + ag). Show that ma(z) =
(=1)"xa(z).

Exercise 6.26. Let A € F"*" and let p(z) € F[z]. Show that

©(A) is invertible if and only if ged(p(x), ma(x)) = 1.

Exercise 6.27. Let A € R"*" be an invertible, triangularizable matrix such that m 4 (z) = m 42 (z).
Show that (A — I,,)" = 0.

Exercise 6.28.  a. Let A, B € C**2suchthatmu(z) = mp(z). Show that A and B are similar.

b. Let

C = , D= e P4,

o O O O
o O oo

0
0
1
0

o O O
o O O O
o o o o
o O O =

0
0
0
0
b

Show that x¢(z) = xp(x) and me(x) = mp(x), but the matrices C, D are not similar.
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Exercise 6.29. Let A € F™"*". Consider the linear map R4 : F*"*" — F"*" defined by R4(B) =
BA. Show the following.

a. If o(x) € Flz], then 0(R4)(B) = Bo(A) forevery B € F"*", and
b. Is it true that xp, () = xa(z)?

Exercise 6.30. Let A, B € F"*"™. We know that x ap(z) = xpa(z) (see Exercise 3.27). Is it true
that map(x) = mpa(x)?

Exercise 6.31. Determine which of the following statements are true. In each case give a proof or
a counterexample.

a. There exists A € R*** with x4(z) = (x — 1)(z + 1)% and ma(z) = (z — 1)%(x + 1).

b. Let A € C™*" such that A% + 5A +1,, = 0. Then A is diagonalizable.

c. There exists A € R3*3 with ma(z) = (z — 1)(z — 3) and A similar to a matrix of the form
* 0 %
* 2 % |?
* 0 =

Exercise 6.32. If f : V' — V is a diagonalizable linear map and U is an f-invariant subspace of
V', then the restriction of f to U is diagonalizable.

Exercise 6.33. Let A € F™*" with det A = 0. Show that there exists a nonzero B € F"*" with
AB = BA =0.

Exercise 6.34. Let A, B € F"*" such that A%> = A and B3 = B. Show the following.

a. A is diagonalizable and rank(A) = Tr(A?).
b. The matrices A, B are similar if and only if rank(A) = rank(B) and Tr(A) = Tr(B).

Exercise 6.35. Let A, B € F"*" with A> — 34 = B? — 3B = (. Show the following:

a. If Tr(A) = Tr(B), then A and B are similar.
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b. If AB = BA, then p(A + B) is diagonalizable for every p(z) € F[z].

Exercise 6.36. Let A € R4 with y4(x) = 2%(z — 1)(z — 2). Show that if AX = AY = 0,

where X = ,then A% = 342 — 2A4.

0
1
and Y = 1
0

O O = =

Exercise 6.37. Let A, B € C%*6 with my(z) = (x — 1)(x — 2) and xp(z) = (z — 3)*(z — 4)%
Show that if V4 (1) C Vp(3) and V4(2) C V(4), then AB = BA.

Exercise 6.38. Let A, B € C"*" such that AB = BA, A'®?! = B8l — T Then A+ B +1,, is
diagonalizable and invertible.

Exercise 6.39. Show that a matrix A € F"*" is diagonalizable if and only if there exist a; € F and
P, € F"™" such that A = a1 P + - - - + ax Py, P? = P;, and P,P; = P; P, forall i, j.

Exercise 6.40. Let A, B € F"*". Show that either map(x) = mpa(z) or map(xz) = x mpa(x)
ormpa(x) = zmap(x).

Exercise 6.41 (Review exercise). Determine which of the following statements are true. In each
case give a proof or a counterexample. Let A € F**™,

a. A™ = 0 for some positive integer m < A" = 0.
b. Aisinvertible < m4(0) # 0.
c. If A? = 4A, then A is diagonalizable.

A O

d. If BeF?"*?" and B = (O A

), then mp(z) = ma(z).

e. If A is invertible, then map(x) = mpa(z) for every B € F™*".



Konstantinos Bizanos Linear Algebra II




CHAPTER [

THE STANDARD INNER PRODUCT ON R" AND C"

7.1 The Standard Inner Product

Definition 7.1.1. The map
() R"XR" - R, (u,v) =ujvy + -+ uptp,

where u = (uq,...,uy) and v = (vy,...,v,), is called the standard inner product on R".

o Ifu= (ug,...,u,) €R", the length (norm) of u is

lu| = \/u? 4+ u = /(u,u).

* The vectors u, v are said to be orthoegonal (perpendicular) if (u,v) = 0.

Observation 7.1.1. For n = 2, one can prove that

cosd = LY
lu| - |v|

where 9 is the angle between the vectors v and v. Hence, cos ¢ = 0 if and only if

(u,vy = 0.

121
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g

<L

Example 7.1.1. Letu,v € R3 withu = (1,1,2) and v = (—1,—1,1). Then
(u,v) =(-1)-14+(-1)-1+1-2=0,

so u and v are orthogonal.

Properties 7.1.1. For any vectors u,v,w € R"™ and any a € R, the following properties of the
inner product hold:

1v.

<

{
{
iii. (au, v) = a{u,v),
{
{
{

vi.
Proof. The proof of the above properties is a simple exercise and is left to the reader (yes, you). [

Example 7.1.2. Let u,v € R™ be two orthogonal vectors. Prove:

i |u4v]? = |ul? + |v]?,

ii. If |u| = |v|, then the vectors u + v and u — v are orthogonal.

Proof. i. Compute:
lu+v]? = (u+v,u+v) = (u,u) + (u,v) + (v,u) + (v,v).
Since u L v we have (u,v) = (v, u) = 0, hence

lu+v|? = [u]® + |v]?.
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ii. Compute:
(u+v,u —v) = (u,u) — (u,v) + (v,u) — (v,v).

Since u L v and |u| = |v|, it follows that
(u+v,u—v) = |uf> = |v|* =0.

Thus u + v and v — v are orthogonal.

Reminder 7.1.1. The set of complex numbers is defined by

C={a+bi|labeR,i®=-1}.

* Every z € C can be written uniquely as z = a + bi, with a,b € R.
* The complex conjugate of z = a + biis zZ = a — bi.

+ The modulus of z is |z| = Va2 + b2

» Additional properties:

=22z, 2z1+tzg=72]+29, 2129 =21%29.

Definition 7.1.2. The standard inner product on C" is the map
() C"xC" = C,  (u,v) =wV1 +u02 + - + UpTn,

where u = (uq,...,u,) and v = (vy,...,vp).

* The length of u is

ul = VI + -+ [unl? = V/{u, u).

* The vectors u, v are orthogonal if (u,v) = 0.

Example 7.1.3. Ifu = (1,7) and v = (—1, ), then
(wu)=1-T+i-i=1+1=2, (uo)=1-(-1)4i-i=-1+1=0.

Hence v and v are orthogonal.
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Properties 7.1.2. For any vectors u,v,w € C" and any a € C, the following hold:

i (u+v,w) = (u,w) + (v,w)
ii. (u,v+w) = (u,v) + (u, w)
iii. (au,v) = a(u,v)

iv. (u,av) =a(u,v)

v. (u,v) = (v,u)

vi. (u,u) >0 and (u,u) =0 u=0

Proof. As an example, we prove property (iv).
Letu = (ui,...,uy) and v = (vy,...,vy) be vectors in C". Then
av = (avy,...,avy),
and therefore

(u,av) = w1avy + - -+ + upav, = a (U101 + - - - + UupYy) = a(u,v).

7.2 Orthonormal Bases
7.2.1 Orthonormal bases and the Gram—Schmidt method
Definition 7.2.1. Let V' C F™. A basis {v1, ..., v, } of V is called orthonormal if:

i. |vjl =1foreachi=1,...,m,

ii. (vs,v;) = 0 for every i # j.
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Example 7.2.1. For V = R?, the standard basis ¢ = {e¢; = (1,0), e3 = (0,1)} is orthonormal.

Likewise, the basis
V2 v2) (V2 V2
272 7\ 27 2

is an orthonormal basis of R? (show why).

These examples can be generalized as follows:

For every angle o, the vectors u = (cos p, sin p) and v = (— sin @, cos @) form an orthonormal
basis of R2.

Indeed,

ju = \Jeost g+ sin? o =1, [o] = y/sin? o+ cos?ip = 1,

(u,v) = cos p(—siny) +sinpcosp = 0.

and

Observation 7.2.1. Let {v1,v2,..., vy} be an orthonormal basis of V and let v € V. Then there
exist unique scalars a; € [F such that

V=aiv1 + "+ QnUmnm.

Moreover,
a; = <Ua Ui>‘

Indeed,
<U7 Ui> = Z a; <Uj> Ui) = Gy.
j=1

Proposition 7.2.1. Every nonzero subspace of R? has an orthonormal basis.

Proof. Let V < R2. By the basis existence theorem, V has a basis {1, us}. Define
U1 = u1

and
V2 = U — pI‘O_]'UIUQ,
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where proj,,, uz is the projection of uz onto u;. Then vy and vy are orthogonal, and
v1]” vz

is an orthonormal basis of V. O

ug — pI’Oju1 Uu9 u9

U1
Proj,,, w2

Next we study the Gram—Schmidt method and see that the above result generalizes to every
subspace of R™.

Gram—-Schmidt Orthonormalization Method

We first describe the method for n = 3. Let V' < F3 and let {u1,u2,us3} be a basis of V.
Define the following vectors in V:

1. V1 = U1
i, vy = uy <1|22}’1|21> v1, where proj,, ug = <le1|’21> v
1ii. v = ug — <I’Li’ |U22> Vg — <lﬁ’ |U21> v1, where the terms are the corresponding projections
2 1
Then

{vlvzvz}
v1]” [oa]” [vs]

is an orthonormal basis of V' (show why).
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v3 u3

w3

Figure for n = 3.

General case. Let {uy,...,u,} be abasis of V and define recursively vy, . . ., v, by

i—1 (s, 07)
T .
V] = U, V= U — E ~ Iy, fori > 2.

v Um
o1] " o

Theorem 7.2.1. Every nonzero subspace of F"* has an orthonormal basis.

Then

1s an orthonormal basis of V.

Proof. LetV < F". By the basis existence theorem, V" has a basis {u1, . .., u,, }. Applying Gram—
Schmidt to this basis yields the desired result. O

Example 7.2.2. Find an orthonormal basis of

V={(z,y,2) R} |z +y+2=0}.

Proof. First find a basis of V:

V = {(:J:,y,—x—y) ’iL',yER}
={z(1,0,-1) 4+ y(0,1,-1) | z,y € R}
= ((1,0,-1), (0,1,—1)).
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Thus {1, us} is a basis, with u; = (1,0, —1) and ug = (0,1, —1). Apply Gram—Schmidt:

<’U,2,U1> 1 1
U1 U ( s Uy ), V2 U2 |'U1|2 U1 27 ) 9

Therefore an orthonormal basis is

{M,’/{)Q‘}’ Where m:ﬁ(1707_1)7 T :7(_1727_1)

Example 7.2.3. Find an orthonormal basis of V' = (a, b, ¢), where

a=(1,1,1,1), b=(1,1,1,-1), c=(3,3,3,—1).

Proof. To find a basis of V' we row-reduce the matrix with rows a, b, c:
111 1110
111 -1]— |0 0 01
3 3 3 0000

Hence {u1,ug} is a basis of V, where u; = (1, 1,1,0) and ug = (0, 0,0, 1). Here (u1,u2) = 0, so
Gram—Schmidt is not needed. Set v1 = w7 and vy = us, and obtain

(% 1 V2
Y (1,1,1,0), 2 —=(0,0,0,1),
o] ~ 3o b0 = (0.0.0.0)

which form an orthonormal basis of V. O

7.2.2 Orthogonal complement of a subspace of "

Definition 7.2.2. Let V' < F". The orthogonal complement of V' is the set

VE={ueF"| (u,v)=0foreveryv € V}.

Proposition 7.2.2. V' is a subspace of F".
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Proof. First, V+ # () since Opn € VL. Letuy,us € V4, ice. (u1,v) = (ug,v) = 0 forallv € V.
Then
(u1 — ug,v) = (ug,v) — (ug,v) =0,

sou; —ug € VL. Also, ifu € V- and \ € T, then
(i, ) = Au,v) = 0,

so\ue V4, O

Example 7.2.4.

Proposition 7.2.3. Let V' < F"™. Then:

L Fr=VaoVv
ii. dimV+ =n—dimV,
iii. fV <U,thenU+ <V,

iv. (VHt=v.

Proof. i. We show that F* = V + V+ and that V N V+ = {0}. By Theorem 7.2.1, V has an
orthonormal basis {v1, ..., v, } (if V' = {0} the claim is immediate).

Let w € F™. Write w = v + (w — v), where

m

v = Z(w,vi)vi eV.

=1
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Then w — v € V+, since for each 1,

(w—v,v;) = (w,v;) — (v,v;) = (W, v;) Z w, vg) (vg, v;) = (w, v;) — (w,v;) = 0.
t

Thus w € V + V. Finally, ifv € VNV, then (v,v) = 0 < v = 0, hence VNV + = {0}.
ii. Immediate from (i), since

n=dim(V ® V%) =dimV +dim V=,

iii. Immediate from the definition: if (w,u) = 0 for all u € U, then in particular (w, v) = 0 for
allveV,sowe V*,

iv. Since every v € V satisfies (v, u) = 0 forall u € V-, we have V C (V1)+. Also,
dim(VH)t =n —dimV+ =n— (n —dimV) = dimV,
o(VHt=V.

How to find V+

Proposition 7.2.4 (Extending an orthonormal basis). Let V' < F”. By Theorem 7.2.1, there exists

an orthonormal basis of V, say {v1, ..., v, }. Then there exists an orthonormal basis of ™ of the
form
{v1,. ", Umy Umt1y .-, Un}
Proof. Let{vy,...,vn} be an orthonormal basis of V. By the basis extension theorem,
{v1,...,vm,u1, ..., uk}

is a basis of F"*. Apply Gram—Schmidt to this basis to obtain an orthonormal basis

{'Ul,. -~7vmavm+17- -~;Un}

of F". O

With this notation, {v1,...,v,,} is an orthonormal basis of V' and {vy,+1,...,v,} is an or-
thonormal basis of V.

In summary, one method to find an orthonormal basis of V' is:
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il.

iii.

1v.

7.3

7.3.1 The matrix A*, the standard inner product, and matrix multiplication

Start with a basis B = {u1,...,up} of V.

Apply Gram—Schmidt to B to obtain an orthonormal basis
B ' ={vi,...,vm}

of V.

Extend B’ to a basis of F":

B" ={vi,...,0m,w1,..., W}

Apply Gram—Schmidt to B” to obtain an orthonormal basis {vy, ..., v,} of F". Then

W ={vms1y.--,0n}

is an orthonormal basis of V.

Hermitian and Unitary Matrices

Definition 7.3.1. Let A = (a;;) € C™*". The matrix

A = (ai5)

is called the conjugate of A, and

A* = (A)t

is the conjugate transpose (adjoint) of A.

Example 7.3.1. Consider

Then

5+2t 0

— (2+i 4 . (240 5-2i
A‘<52¢ 0)’ A‘(4 0 >

A= (2” 4) e C2%2,

Konstantinos Bizanos
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We will often regard the standard inner product as defined on column vectors, i.e. (-, -): C"*! x
cl — C.If

T Y1
X = , Y = c (Cn><17
Tn Yn
then
n
<X7 Y> = Z TilYi
=1

Note that (X,Y) = X'V,

Lemma 7.3.1. Let A € C™*™, Then:

i. Forall X, Y € C™!, (AX,Y) = (X, A*Y).
ii. If ({AX,Y)=0forall X,Y € C"*!, then A = 0.

Proof. i. We have
(AX,Y) = (AX)'Y.

Also,
(X, A*Y) = X'A*Y = X'A'Y = (AX)'Y.

Hence they are equal.

ii. Take X = F; and Y = E;, where E}, is the kth standard basis column. Then
<AX,Y> = <AEZ,E]> = Qyjj-

Since this is 0 for all 4, j, all entries of A are zero, hence A = 0.

7.3.2 Hermitian Matrices

Definition 7.3.2. A matrix A € C™"*" is called Hermitian if A* = A.

Observation 7.3.1. i. A matrix A € R™" is Hermitian if and only if it is symmetric.

ii. Amatrix A = (a;;) € C"*" is Hermitian if and only if a;; = a;; and a@;; = aj; for all i # j.
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Example 7.3.2. i. The matrix

is Hermitian since

1. The matrix

is not Hermitian since

Properties 7.3.1. Let A € C"*" be Hermitian. Then:

i. Every eigenvalue of A is real.

ii. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. i. Let A € C be an eigenvalue of A with eigenvector X # 0, so AX = AX. Then
(AX, X) = (0\X, X) = XX, X).
By Lemma 7.3.1,
(AX, X) = (X, A*X) = (X, AX) = (X, AX) = M (X, X).

Hence
A= N(X,X)=0.

Since X # 0, we have (X, X) # 0, therefore A = ), i.e. A € R.

ii. Let A # p be eigenvalues with eigenvectors X, Y
AX = )2X, AY = uY.

Then
(AX)Y) = (A\X,)Y) = \X,Y),

and also
(AX)Y) = (X, A"Y) = (X, AY) = (X, uY) =1 (X,Y).



Konstantinos Bizanos Linear Algebra II

By (i), 4 € R, so z = p. Thus
(A= 1)(X,Y) = 0.

Since A\ # pu, it follows that (X,Y) = 0,ie. X LY.

O]

The reader is invited to compare Property 7.3.1(ii) with the familiar fact for arbitrary matrices,
namely that distinct eigenvalues correspond to linearly independent eigenvectors.

7.3.3 Unitary Matrices

Definition 7.3.3. A matrix A € C"*" is called unitary if

AA* = A*A =1,.

Observation 7.3.2. Let A € C**",

i. A is unitary if and only if it is invertible and A~! = A*,
ii. Aisunitary ifand only if AA* =1, & A*A = 1I,.

iii. If A € R™*", then A is unitary (orthogonal) if and only if it is invertible and A~! = A’

Example 7.3.3. 1. The identity matrix [,, is unitary.

1. The matrix
A, = <C(.)S © —sin gp)
singp  cosp

is unitary (orthogonal), since AWAZ; = I>. Geometrically, A, represents a rotation of the
plane by angle .

11i. The matrix

A=

O = O
S O =
= o O

is unitary (orthogonal), since A = A and AA! = I3.
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a1

is not unitary, since AA* = 5I5. However, the matrix %A is unitary.

1v. The matrix

Proposition 7.3.1. Let A, B € C"*™ be unitary. Then:

i [detA| =1,

ii. the matrices AB and AB~! are unitary,

iii. the matrix é Z e CrtD)x(+1) js unitary.

Proof. i. Since A is unitary, AA* = I,,. Taking determinants,
det A-det A* =detA-detA=detA detA=|detA®> =1,
so |detA| = 1.
ii. Since A, B are unitary,
(AB)(AB)* = ABB*A* = AA* = I,,,

and similarly (AB)*(AB) = I,,, so AB is unitary. Also B*B = I, implies B~1(B71)* =
I,,, hence B! is unitary, so AB —lig unitary.

i1i. Immediate, since

(L]0 _(1]OY
\of4) \o]a)

Theorem 7.3.1 (Characterizations of unitary matrices). Let A € C™*". The following are equiva-
lent:

i. A is unitary.

ii. (AX,AY)=(X,Y)forall X,Y € C"*!,
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iii. The columns of A form an orthonormal basis of C™*!,
iv. The rows of A form an orthonormal basis of C"*1.

v. |AX]| = |X]| forall X € C"*!,

Proof. * i. = ii. If A is unitary, then A*A = I,,. Hence

(AX,AY) = (X, A*AY) = (X,Y).

* ii. = iii. Take X = F; and Y = E;. Then (AE;, AE;) = (E;, Ej), so
) ] 17 7‘ = j7
(AD AWy =
0, i#J,
i.e. the columns of A are orthonormal.

* iii. = iv. From <A(i), A(j)> = &;; we get A'A = I, i.e. A*A = I, hence the rows are
orthonormal.

* iv. = i. If the rows are orthonormal, then AA* = [,,, so A is unitary.
cii. >v.Put X =Y.
* v. = ii. Assume |AX| = | X| for all X. For arbitrary X, Y,
JAX+Y)|=|X+Y].
Squaring and expanding gives
(AX,AY) + (AY, AX) = (X, V) + (Y, X) («).
Replace Y by ¢Y to get
—i(AX, AY) + i(AY, AX) = —i(X,Y) + (Y, X) (B).

Adding () and i - (§) yields (AX, AY) = (X,Y).

After proving the theorem, let us add two remarks.



Linear Algebra II Konstantinos Bizanos

i. Property (v) says that a unitary matrix preserves lengths.

/\y /\y

AX
Preservation of vector length.
ii. Property (ii) shows that angles are preserved: if
(X,Y)
cost) = ————,
X1 -1
then cos ¢ does not change under a unitary transformation.
J\y J\y
Y
X AX
)
A
———————— >
> T g > X
AY
Preservation of angles.

Corollary 7.3.1. Every eigenvalue of a unitary matrix has modulus 1.

Proof. Let A € C™*™ be unitary. The claim follows immediately from Theorem 7.3.1(v) applied
to an eigenvector X # 0 of A. O
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7.4 Exercises of Chapter 7.

Group A: 1,2,3,4,5,7,8,10,11, 13
Group B: 6,9, 12, 14, 16,17, 18, 19
Group C: 15

Exercise 7.1. Let u,v € R".

a. If (u,v) = 0, then |u + v|? = |u|? + |v|%. When n = 2, this is the Pythagorean theorem.

b. If |u| = |v]|, then u + v and u — v are orthogonal. When n = 2, this says that the diagonals
of a thombus are perpendicular.

c. |u+v|?+ |u—v]? = 2Ju|? + 2|v|?. Give a geometric interpretation when n = 2.

Exercise 7.2.  a. Find an orthonormal basis of R? that contains the vector u = % (1,0,1).

b. Find an orthonormal basis of R® that contains the vectors u; = % (1,0,2)and us = (0, 1,0).

Exercise 7.3. Let {u1,...,u,} be an orthonormal basis of C" and let V' = (uq,...,u;) with
1 < k < n. Show that an orthonormal basis of V- is {ug11,. .., un}.
Exercise 7.4. Let V be the subspace of R* generated by

v =(1,1,-1,-1), wvs=(1,2,3,—1), v3=(4,7,8,—4).

After finding a basis of V, find an orthonormal basis of V' and an orthonormal basis of V.

Exercise 7.5. Let
V ={(z,y,2) €ER®: 2 — 2y + 2 = 0}, W ={(z,y,2) €ER®:x+y+2 =0}

Find an orthonormal basis for each of the subspaces V, VL, VW, and (Vn W)L.

Exercise 7.6. Let W1, Wy < F™. Show that (W1 + WQ)J_ = WlJ‘ N WQJ‘ and (W1 N WQ)J_ =
Wit + Wi

Exercise 7.7. Let A, B € C™"*". Prove:
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c. (A)*=A4

d. (AMA)* = NA* for every A € C.
e. (A+B)* = A"+ B*.

f. (AB)* = B*A*.

g. If A is invertible, then (A*)~! = (A~1)*,

Exercise 7.8. Let A € C"*". If ¢(x) € Clz], ¢(z) = anz™ + - - - + a1z + ap, define

o(z) = apz"™ + - -+ a1z + aop.

Show:

a. x4 (2) = Xa(2).
b. ma-(x) =ma(x).

c. \is an eigenvalue of A iff \ is an eigenvalue of A*.

Exercise 7.9. Let A € C™*" with A*A = —A. Show that A is similar to a diagonal matrix of the
form

diag(0,...,0,—1,...,—1),
and that rank(A) + rank(A + I,,) = n.

Exercise 7.10. Let A, B € C™*"™ be unitary. Show:

. A, A, and A~ are unitary.

&

b. If \ is an eigenvalue of A, then || = 1 and } is an eigenvalue of A*.

o

. |detA| = 1.

d. AB and AB~! are unitary.
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Exercise 7.11. Find a unitary matrix whose first row is (\/% 0 \/%—0> .

Exercise 7.12. Let U € C™*" be unitary with det(U — I,,) # 0. Then the matrix H € C"*"
defined by
iH=(U+1,)(U -1, "

1s Hermitian.

Exercise 7.13. Let A € C"*". Show that if any two of the following hold, then the third holds as
well:

a. A is Hermitian.
b. A is unitary.

c. A2=1,.

Exercise 7.14. Let A € R™*" be unitary (orthogonal). Show:

a. Ifdet A = 1 and n is odd, then 1 is an eigenvalue of A.
b. If det A = —1 and n is even, then 1 is an eigenvalue of A.

c. If det A = —1, then —1 is an eigenvalue of A.

Exercise 7.15. Let A, B € R™*"™ be unitary (orthogonal) with det A = — det B. Then

det(A+ B) = 0.

Exercise 7.16. Let A € C*"*" with A* = —A. Show:

a. Every eigenvalue of A is of the form iy with u € R.
b. The matrix A + I, is invertible and det(A + I,,) > 1.

c. The matrix (I, — A)(I, + A)~! is unitary.

Exercise 7.17. Let A € C" ", Show that if |[AX| = | X| for every X € C"*1, then A is unitary.
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Exercise 7.18. Let A € C™ " such that (AX, X) = 0 for every X € C™ . Show that A = 0.
Does the same conclusion hold if A € R™ "™ and (AX, X) = 0 for every X € R"*!?

Exercise 7.19. Prove Exercise 7.17 using Exercise 7.18.

Exercise 7.20 (Review exercise). Decide which of the following statements are true. In each case
give a proof or a counterexample.

a. If A, B € C™*™ are Hermitian, then A + B is Hermitian.
b. If A, B € C™*" are Hermitian, then AB is Hermitian.

c. If A, B € C™*™ are Hermitian and AB = BA, then AB is Hermitian.

d. The matrix

cosf) —sinf 0 0
sinf  cosf 0 0
0 0 cos¢ sing
0 0 —sing cos¢

is unitary.
e. If A, B € C™*" are unitary, then every eigenvalue of AB has modulus 1.

f. There is no unitary A € C"*" such that (A — 2I,,)(A — 31,,)(A — 41,,) = 0.
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CHAPTER 8

NORMAL MATRICES

8.1 Schur’s Lemma

Lemma 8.1.1 (Schur). i. (Complex version) For every A € C"*"™ there exists a unitary matrix
Uy € C™ " such that UXIAU 4 is upper triangular.

ii. (Real version) For every triangularizable matrix A € R™*" there exists an orthogonal matrix
Ua € R™ ™ such that UZIAU 4 1s upper triangular.

Proof. i. The proof is similar to the proof of Theorem 5.1.1, with the difference that we seek a
unitary matrix Ug4.

We proceed by induction on the size n of A.

* Base case. For n = 1 the result is obvious.
* Inductive step. Assume the statement holds for every (n — 1) x (n — 1) matrix.
Let A € C™*™. Since A is triangularizable, the characteristic polynomial y 4(z) splits
into linear factors. Let u be an eigenvector of A with eigenvalue \. Set
u
v1T — —.
|ul
Then there exists an orthonormal basis {vy, . . ., v, } of C"**1. Hence there exists U; €
C™*™ whose columns are

U =v,  i=1,...,n.

143
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By Theorem 7.3.1, the matrix U; is unitary, and

UL AU, = %‘% ., Bechhx-1)

By the induction hypothesis, there exists a unitary Uy € C™~1*("=1) such that U, ' BU,

is upper triangular. Define
110
=0 fote)

By Proposition 7.3.1, U4 is unitary, and UZIAU 4 1s upper triangular.

ii. The proof is exactly the same as in (i).

8.2 Spectral Theorem

Theorem 8.2.1 (Spectral Theorem). i. (Complex version) For every Hermitian matrix A €
C™*™ there exists a unitary matrix U € C™*" such that U~ AU is diagonal.

ii. (Real version) For every symmetric matrix A € R"*" there exists an orthogonal matrix
U € R™ ™ such that U~ AU is diagonal.

Proof. i. Let A € C™*" be Hermitian. By Schur’s Lemma there exists a unitary U € C"*"
such that U =Y AU = T, where T is upper triangular. Since A = A*, we have

UTU ™ = (UTU Y = (U ) T*U* =UT* U = T=T"

Since T is upper triangular and equal to its conjugate transpose, it must be diagonal. More-
over, since 1" = T, it is real (its diagonal entries are real).

ii. The proof'is analogous to (i), noting that a real symmetric A € R™*" is triangularizable over
R, since it is triangularizable over C and by Properties 7.3.1 all its eigenvalues are real.

O]

Example 8.2.1. Consider the matrix

2 -1 1
A=|-1 2 —1] eRr®*3.
1 -1 2

Find an orthogonal matrix P such that P! AP is diagonal.
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Proof. In the usual way, we find that

1 1 0
-1 is a basis of V4 (4), 1],]1 is a basis of V4 (1).
1 0 1

By Properties 7.3.1, every vector in V4(4) is orthogonal to every vector in V4(1), since A is real
symmetric. Applying Gram—Schmidt separately to each eigenspace, we obtain the following or-
thonormal bases:

» For V4(4):
o
V31
» For V4(1):
1 (! (1
— (1], =11
V2\o) VB

Thus, setting
1/vV3 1/vV2 —1/6
P=|{-1/v3 1/vV2 1/V6 |,
1/vV3 0 2//6
the matrix P is orthogonal and
P~1AP = diag(4,1,1).

8.3 Normal Matrices

Question 8.3.1. For which matrices A € C™*™ does there exist a unitary matrix U € C™*" such
that U=1 AU is diagonal? We saw in the previous subsection that Hermitian matrices have this
property. Are there others?

Observation 8.3.1. Suppose A € C™*" has the above property, i.e. there exists U € C"*" such
that U—' AU = A is diagonal. Then A = UAU~!. We compute:

AA* =UAU - (UAU Y = UAU N U Y A*U* =UAU ' UA* U =UAA* UL
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Similarly,
A*A=UNAU

But A is diagonal, hence AA* = A*A. Therefore AA* = A*A. Later we will see that the
converse also holds.

Lemma 8.3.1. If 7" € C™*™ is upper triangular and 77" = T*T, then T is diagonal.

Proof. We prove the claim by induction on n.

¢ Base case. For n = 1 the statement is trivial.

* Inductive step. Let

[tu |tz -t
0

T = e Cnxn T, € (C(nfl)x(nfl)
: T ’

0

with T7 upper triangular. The condition T7T™* = T*T is equivalent to

/tn‘tu tln\ /E‘O 0\ /E‘O 0\ /tn‘tw tln\
0 t12 t12 0
: T : Ty B Ty : Ty
0 tin tin 0

Comparing the (1, 1)-entry yields
ta? + [t + -+ [t = [t

hence t13 = -+ = t1, = 0. It follows that 711} = 1711, so by the induction hypothesis T}
is diagonal. Since the first row off-diagonal entries are 0 and 7} is diagonal, 7" is diagonal.

O]

Theorem 8.3.1. Let A € C™*". The following are equivalent:

i. There exists a unitary matrix U € C™*" such that U~ AU is diagonal.

ii. AA* = A*A.
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Proof. * i. = ii. This was shown in Notation 8.3.1.

e il. = i. Let A € C™*" satisfy AA* = A*A. By Schur’s Lemma there exists a unitary U
such that A = UTU ! with T upper triangular. From AA* = A* A we obtain TT* = T*T,
and since 7' is upper triangular, Lemma 8.3.1 implies that 7" is diagonal.

O
Definition 8.3.1. A matrix A € C™**" is called normal if AA* = A*A.

Example 8.3.1. i. Every diagonal matrix is normal.
ii. Every Hermitian matrix is normal.

iii. Every unitary matrix is normal.

. . 1\ . .
1v. The matrix < ) 1s not normal, since

1
0 2
L (22 13\ .
AA_<2 4 # 1 5 = A™A.
Theorem 8.3.2. Let A € C™*™. The following are equivalent:

i. A is normal.
ii. There exists a unitary matrix U € C™*" such that U ! AU = A is diagonal.

iii. There exists an orthonormal basis of C"*! consisting of eigenvectors of A.

Proof. * i. < ii. This was proved in Theorem 8.3.1.

* ii. = iii. Each column of U is an eigenvector of A. These columns form an orthonormal
basis of C"*! since U is unitary.

* iii. = ii. The proofis left as an exercise to the reader.

Lemma 8.3.2. Let B € C™*" satisfy (BX, X) = 0 for every X € C"*!. Then B = 0.
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Proof. Let X,Y € C™!, Then
(BIX +Y), X +Y) =0

is equivalent to
(BX,X)+ (BX,Y)+ (BY,X) +(BY,Y) =0.

Hence
(BX,Y)+ (BY, X) =0. (8.1)
Replacing Y by Y gives
i(BX,Y)+1i(BY,X)=0. (8.2)
Combining (8.1) and (8.2) yields (BX,Y) = 0 for all X, Y. By Lemma 7.3.1(ii), it follows that
B=0. O

Warning! Lemma 8.3.2 does not hold in general if B € R™*" and (BX, X) = 0 for all
X € R™¥!, For example, the 90° rotation matrix

satisfies the above property, but B # 0.
Lemma 8.3.3. Let T € C™*™ be upper triangular such that every eigenvector of T is also an
eigenvector of T*. Then T is diagonal.

Proof. We prove the claim by induction on n.

¢ For n = 1 the statement is trivial.

* Inductive step. Let T" be upper triangular and assume every eigenvector of 71" is also an
eigenvector of 7. Write

[t [tz -t /E

0 t12

o --- 0\
T =

T ’ Tl*

0 tin

T —

Since E is an eigenvector of ', by hypothesis it is also an eigenvector of 7. Therefore
(T*)) = XE}, hence
Fz=- = =0.
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Now let
T2
X' =
T
be an eigenvector of 1, and define
0
%)
X =
Tn

Then X is an eigenvector of T', hence also of T*. It follows that X is an eigenvector of 7',
and by the induction hypothesis 77 is diagonal.
O]
Theorem 8.3.3. Let A = (a;;) € C™*" have eigenvalues Ay, ..., \,. The following are equiva-
lent:
i. A is normal.
ii. There exists a unitary matrix U € C™*" such that U~ AU is diagonal.
iii. There exists an orthonormal basis of C"*! consisting of eigenvectors of A.
iv. |[AX|=|A*X]| forevery X € C"*1,

v. Va(\) = Vg« (A) for every eigenvalue A of A.

vi. Every eigenvector of A is also an eigenvector of A*.

Y agl? =) Il
ij i

—_
—

A%

Proof. * The equivalences i., ii., iii. were proved in Theorem 8.3.2.
* i. = iv. If A is normal, then AA* = A*A. For every X € C™*!:
((A"A - AA")X,X) =0

— (AX AX)=(A"X A*X)
— |AX|=]4"X]|.



Konstantinos Bizanos Linear Algebra II

e iv. = 1. If |[AX| = |A* X]| for every X, then
(A*A—AA"X,X)=0 forall X.
By Lemma 8.3.2, we get A*A = AA*, hence A is normal.
* i. = v. If Aisnormal, then B = A — AI is also normal. Using (iv), we have
|IBX|=0 & |[B*X| =0 = Va(A) = Va:(N).
* v. = i. By Schur’s Lemma there exists a unitary U such that T = U ! AU is upper triangular.

If UX is an eigenvector of A, then X is an eigenvector of T', and by hypothesis also of 7.
By Lemma 8.3.3, T is diagonal, hence A is normal.

* i. = vi. Fromi. = v., and the inclusion of eigenspaces, the implication v. = vi. is immediate.
* vi. = i. Trivial from vi. = v. and v. = 1.

e i. = vii. If A is normal, then
Tr(AA*) =) ai;|*.
Y]
Also, since A is unitarily diagonalizable, U AU = A, we get
Tr(AA*) = Tr(AA¥) Z A2

s vil. = LI, laij|* = >, |A\i|? and UL AU = T is upper triangular, then

Z |ai;|* = Z |tij|* = Z INil* + Z |tij|* = Z tij|° =

i#] i#]
soT'is diagonal and thus A is normal.

After completing the proof, let us make a couple of remarks about Theorem 8.3.3

i. Property (iv) says that if A is normal, then |AX| = |A*X|. For X = E; we get |[A®)| = | A;],
i.e. the ith column of A has the same length as the ith row of A, foreachi=1,...,n.

ii. In general, for every A € C™*", if

xa(@) =(z = A1) (= An),
then

Xas(z) = (z = A1)+ (z = An).
However, when A is normal, we also have V4(\) = V4« (\) for every eigenvalue \ of A.
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8.4 Exercises of Chapter 8.

Group A: 1,2,3,4,5,6,7, 15,17, 19, 20, 21, 21, 23, 26
Group B: 8,9, 10, 13, 14, 16, 18, 24, 25, 27
Group C: 11, 12

Exercise 8.1. Determine whether there exists a real orthogonal matrix P such that P~ AP is upper

triangular, where
0 1
A= (_1 2).

If such a P exists, find one.

Exercise 8.2. Let
2 -1 1
A=1-1 2 —1] eR¥S3,
1 -1 2

Find an orthogonal P € R3*3 such that P~' AP is diagonal.

Exercise 8.3. Let

4 3 0
A=1[3 12 0] e rR?3
0 0 1

with eigenvalues 1, 3, 13.

a. Find an orthogonal U € R3*3 such that U~ AU is diagonal.

b. Let f : R? — R3 be linear with (f : @,a) = A, where a is an ordered basis of R?. Show that

RO 59 430 4+ 1ps #0.

Exercise 8.4. Let A € C"™", H = 1(A+ A*),and S = (A — A¥).

a. Show that H is Hermitian and that S* = —S.

b. Show that if every eigenvector of H is also an eigenvector of S, then A is normal.
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Exercise 8.5. Show that there exists an orthonormal basis of C2*! consisting of eigenvectors of

14 2x2
(a 1) eC

if and only if |a| = 1.

Exercise 8.6. Show that if A is normal, then the ith row of A has the same length as the ith column
of A, for every i.

Exercise 8.7. Find all normal matrices A € C"*" such that A™ = 0 for some m.

Exercise 8.8. Let A € C™*" be normal. Prove:

a. A is Hermitian < every eigenvalue of A is real.

b. A is unitary < every eigenvalue of A has modulus 1.

Exercise 8.9. a. If A € R™*" is symmetric and A* = I,,, then A? = I,.
b. Find all symmetric A € R™*" such that A82! = T,
c. If A € C™*™ is Hermitian and unitary with Tr(A) = 0, then n is even.

d. If A € C™*" is Hermitian and unitary and has at least two distinct eigenvalues, find the
minimal polynomial of A.

Exercise 8.10. a. Forevery A € C"*"™, the matrix A + A* — iI,, is invertible.
b. If A, B € R™*™ are symmetric and AB = BA, then AB + i, is invertible.
c. Let A e C™ ™,

i. Every eigenvalue of AA* is real and nonnegative.

ii. det(AA* + I,,) is a real and positive number.
Exercise 8.11. If A € C™*" is normal, then A* = f(A) for some f(z) € C[z].

Exercise 8.12. Let A € C"*" and B = AA* — A*A. Show that if AB = BA, then A is normal.
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Exercise 8.13. Find a symmetric A € R3*3 with eigenvalues 1,1, —1 such that the eigenspace
V4 (1) is spanned by

1 2
1], |2
1 1

Is A unique?

Exercise 8.14.  a. Let A € R** with dim V4(2) = dim V4(3) = 2 and (u,v) = 0 for every
u € V4(2) and v € V4(3). Show that A is symmetric.

b. Let A € R™*" satisfy AA® = A A and assume y 4 () splits into linear factors in R[z]. Show
that A is symmetric.

Exercise 8.15. Let A € R™*" be symmetric and not of the form cI,,, ¢ € R. Find m(x) if

(A—2I,)%(A - 31,)* = 0.

Exercise 8.16. If A € C™*™ is normal and A1, \o are distinct eigenvalues of A, then

Vi) = Va(Ae)t.

Exercise 8.17. Let A, B € C*** be normal matrices with
xa(@) = (- 1)*@-2)?%  xp(r) = (z-3)*(x-4)~

If Va(1) = Vp(3), show that AB = BA.

Exercise 8.18. Let A € C"*". Show that A is Hermitian if and only if (AX, X) € R for every
X e cl,

Exercise 8.19. Give an example of A € C3*3 such that there exists a basis of C3*! consisting of
eigenvectors of A, but there is no orthonormal basis of C3*! consisting of eigenvectors of A.

Exercise 8.20. Let B € C™*" satisfy
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a. Show that if B is Hermitian, then B = %In.

b. Show that if B is unitary, then B = il,.

Exercise 8.21. Let u € R™*! with |u| = 1, and set S = I,, — uu! € R™*",

a. Show that there exists an orthonormal basis of R"*! consisting of eigenvectors of .S.

b. Show that Su = 0 and Sv = v for every v € R™*! such that (v,u) = 0. Then find the
dimension of each eigenspace of S.

c¢. Give a geometric interpretation of S for n = 2, 3.

Exercise 8.22. Leta € C and

c (C3><3

S

Il
O = O
o O =
— o Q

a. Is it true that for every a there exists a unitary U € C3*3 such that U~ AU is upper triangu-
lar?

b. Isit true that for @ = 1 there exists a unitary Q € C3*3 such that Q~* AQ is upper triangular?

c. Find all values of a such that there exists an orthonormal basis of C3*! consisting of eigen-
vectors of A.

d. Leta = 0. Find a unitary U € C3*3 such that U1 AU = diag(1, —1,1).

Exercise 8.23. Let
2 1 2
A=10 4 1] eR*>3.
0 -2 1

a. Find a basis for each eigenspace of A and determine whether A is diagonalizable.
b. Find two linearly independent eigenvectors of B = A2 — 8A7 4+ 5A4°% + 415,

c. Determine whether there exists an ordered basis @ = (a1, as, a3) of R? such that (f : @, a) =
A, where f : R? — R3 is the linear map defined by

f(a1) = 3a1 —6az, f(a2) = 3a1 — 8az + 6az, f(az) = 5as.
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d. Find (if it exists) an invertible P € R3*3 such that P~' AP is upper triangular.

e. Find (if it exists) an orthogonal U € R3*3 such that U~' AU is upper triangular.

Exercise 8.24. Let

0 0 -3
A=[-1 3 1 | e R®*.
1 0 4

a. Determine whether there exists an orthogonal P € R3*3 such that P~! AP is upper triangu-
lar.

b. Let B = A'®2! — A3 4 I3, Find an invertible Q € R3*3 such that Q' AQ is upper triangular.

c. If f: R® — R3 is linear with (f : a,a) = A, determine whether f2 — 3f — 18 - 1ps is an
isomorphism.

Exercise 8.25. Let A € R™*" be symmetric. Consider the linear map
Ly:R™ SR LX) = AX.

Show that
ker(L4) = (Im(L4))*.

Exercise 8.26. Let A ¢ C3*3 satisfy A*A = 4A.

a. Show that A is Hermitian.

b. Determine whether there exists an orthonormal basis of C3>*! consisting of eigenvectors of

A.

c. Show that if rank(A) = 1, then there exists a unitary U € C3*3 such that U1 AU =
diag(4,0,0).

d. Determine whether (AX, AY) = (X,Y) forall X,Y € C3*!,

Exercise 8.27. If T € C™*" is upper triangular and every eigenvector of 7" is also an eigenvector
of T, then T is diagonal.
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Exercise 8.28 (Review exercise). Decide which of the following statements are true. In each case
give a proof or a counterexample. Let A € C™*™ be Hermitian.

a. If A is unitary and every eigenvalue of A is positive, then A = I,.
b. ©(A) is diagonalizable for every p(z) € C|x].
c. If A™ = 0 for some m, then A = 0.

d. If every eigenvalue of A is nonnegative, then there exists a Hermitian B € C"*" with B? =
A.
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